Extensions to Kernel Dependency
Eistimation

— with Applications to Robotics —

vorgelegt von
Diplom Ingenieur

Gokhan Hasan Bakar
aus Istanbul

von der Fakultat IV
Elektrotechnik und Informatik
der Technischen Universitat Berlin
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr. Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. G. Hommel
Berichter: Prof. Dr. B. Jahnichen
Berichter: Prof. Dr. B. Scholkopf

Tag der wissenschaftlichen Aussprache: 15. Dezember 2005

Berlin 2006
D &3

Fatma Meral Bakir, Evrim Ergul-Bakir

ve

kendim

1¢in

Contents

Foreword
Acknowledgment
Notation and Symbols

1 Introduction and Preliminaries
1.1 Supervised Learning
1.1.1 Regularization
1.1.2 Classification
1.1.3 Regression.
1.2 Beyond linear models: Kernels
1.3 KDE . . . e
1.3.1 A rough sketch: Divide and Conquer
1.4 Structure of this thesis

I Kernel Dependecy Estimation

2 Multivariate regression via Stiefel constraints.
2.1 Imtroduction L L
2.2 Problem setting and motivation,
2.2.1 On-line setting
2.3 Existing Multivariate Techniques
2.3.1 Restricted Least Squares Regression
2.3.2 Principal Component Regression
2.3.3 Partial Least Squares in one and more dimensions
2.3.4 Reduced Rank Regression
2.4 Multivariate Regression with Stiefel Constraints
2.4.1 Dynamics on Stiefel manifolds.
2.4.2 Do we need the mgiefe] Operation? L. L.
2.4.3 Multivariate regression with Lo loss
2.4.4 Soft-Regularization 0L
2.4.5 On-line variant: SSMRS L
2.5 The probabilistic viewpoint — Bayesian Inference with rank constraint . . .
2.5.1 The Anatomy of the Posterior Distribution
2.5.2 Sampling from the Posterior using MCMC
2.6 Experiments.
2.6.1 Comparing PLS and MRS-Ly
2.6.2 Face denoising: a large-scale problem

iii

vi

viii

I1

2.6.3 Probabilistic Inference using the Laplacian Likelihood 43

2.7 Conclusion e 44
Strategies For Continuous and Discrete Pre-Image Problems 45
3.1 Introduction 45
3.1.1 The pre-image problem: An ill-posed problem. 46
3.1.2 Relaxation of the pre-image problem 47
3.2 Pre-Images by smooth optimization. 48
3.2.1 Gradient Descent L L o 48
3.2.2 The Fixed-Point Iteration Method 49
3.2.3 Multi-Dimensional Scaling based technique 50
3.2.4 Pre-Images by Learning 53
3.3 Evaluation of pre-image techniques for continuous input spaces 55
3.4 Pre-Images for Complex Objects 58
3.4.1 From combinatorial optimization to estimation 58
3.4.2 Adding a Prior to the CE Method 61
3.4.3 The marginalized kernel for sequences and graphs 62
3.4.4 Pre-images for sequences L. 64
3.4.5 Pre-images for labeled graphs L. 69
3.5 Imterpolating Sequences 72
3.6 Conclusion e 74
Speeding up KDE by Reduced Set Methods. 77
4.1 Introduction L 7
4.2 Existing reduced set selection techniques 79
4.3 Fast Reduced Set Selection 80
4.3.1 Hyperplane Matching Pursuit 81
4.3.2 Multiple-Hyperplane Matching Pursuit 83
4.3.3 fp-norm Reduced Set Selection 84
4.3.4 Chunking Method: handling large datasets 86
4.3.5 A common pitfall in reduced set selection 87
4.4 Experiments.o 88
4.4.1 Artificial Problems oo oL 88
4.4.2 Two-class Classification 89
4.4.3 Multi-Class Classification 90
4.4.4 Regressiono e 92
4.4.5 Reduced Set Selection for Kernel PCA 92
4.5 Conclusion 95
Applications to robotics 97
The problem of robot imitation — Optimization based Approach 99
5.1 Introduction e 99
5.1.1 Related Work 100

5.2 Hierarchical Spatio-temporal Morphable Models as representation for Imi-
tation Learningo 100
5.2.1 Morphable Models for modeling movement primitives 101
5.2.2 Concatenation 102
5.3 Transferring human-like movements to a robot arm 102

v

5.3.1 Mapping of the coordinate systems 103

5.3.2 Initialization of robot posture L. 103

5.3.3 Task Execution 104

5.4 Experiments. 104
5.5 Should a robot imitate? o o 107
5.6 Conclusion 110

6 Robot Imitation — A Learning based Approach 113
6.1 Estimation of Human Pose 114
6.1.1 Contour descriptors 115

6.1.2 Skin-Color based pose estimators 117

6.1.3 Combining color and shape cues 118

6.2 From Human to Robot Posture 120
6.2.1 A similarity measure on kinematic chains. 121

6.2.2 Interpolation using constrained pre-images. 122

6.3 Experiments. 123
6.3.1 Training KDE oo 123

6.3.2 Are the features the right choice? 128

6.4 Conclusion L 131

7 Summary 135
Appendix 137
X.1 The kinematical equations of the Mitsubishi PA-10 robot 137

Bibliography 139

Foreword

Kernel Dependency Estimation (KDE) is a recently introduced technique that learns gen-
eral functional dependencies between structured input and output data. The general
framework introduced by KDE, of dealing with structured data by employing an embed-
ding step, a mapping step, and solving a pre-image problem to invert the mapping allows
many possible implementations.

The subject of this book is the exploration of such methods, from both a theoretic and
algorithmic point of view, without losing sight of a target application of these methods
in the field of robotics. This includes the analysis of the interplay between embeddings,
mappings and loss functions, the introduction of the algorithm Multivariate regression via
Stiefel constraints, and strategies for efficiently solving the pre-image problem for vectors,
graphs and sequences.

The second part of the book, in Chapters 5 and 6 presents a mathematical approach
to the problem of pose imitation (from human to robot). The author then goes on to
present a novel learning approach utilizing all the developed tools in this thesis to give
an efficient imitation learning system which can operate in the presence of only limited
domain knowledge. The potential of such a system, which combines kernel design from
image processing through to kinematics, advanced regression techniques and constrained
pre-image algorithms is an exciting prospect, from my point of view because many of the
components are well motivated general techniques rather than heuristics. While being
theoretically motivated, the approach never loses sight of the use of domain knowledge
when applicable, which I find quite an achievement.

I find this work, submitted for the title of Eztensions to Kernel Dependency Estimation,
a substantial contribution to Machine Learning. I certainly hope the reader does as well.

Jason Weston, NEC Research Labs America, Princeton, USA

Acknowledgment

This thesis is the possible result of the Brownian motion of my life.

First of all, I am thankful for Prof. Bernhard Schélkopf giving me the opportunity to
enter his lab and pursue a PhD in his group. Bernhard was always available for discussion
of fresh and mostly crazy ideas. Furthermore, I would like to thank Prof. Jahnichen for
accepting this thesis.

I have expected a challenging environment among high motivated students but was pleased
to find a motivating (still challenging) environment among future friends. Furthermore,
I am indebted to Matthias Otto Franz who actually accepted me as his Ph.D. student.
He mainly teached and guided me how to approach problems in a systematic way, think
and write scientifically and stop breeding chaotic thoughts. Whenever I was jumping up
with a new exciting idea he was ready to share my thoughts and required me to reconsider
details always ready to give a crucial hint.

I am also grateful to met my second supervisor Jason Weston which mainly introduced
me to the idea of Kernel Dependency Estimation. All our cooperation mostly ended up in
me being astonished about how easy Jason was always able to explain and discuss topics.
During my PhD time I had the chance to stay at the NEC Laboratories in Princeton,
NJ where I had the chance to work with Léon Bottou, Vladimir Vapnik and Jason. At
that time I made another quantum leap in understanding kernel methods and especially
Support Vector Machines. Thank you!

I had the pleasure to learn or work with many people during my PhD. Without these
interactions, parts of this thesis would not have been possible. In the first place I am
thankful to Martin Giese, Arthur Gretton, Olivier Chapelle, Alexander Zien, Koji Tsuda,
Olivier Bousquet, André Elisseeff and Wolf Kienzle. Furthermore I am grateful to all my
fellow PhD colleagues for sharing a good time in the lab. Here, especially I would like to
thank Matthias Hein, Jan Eichhorn, Ulrike von Luxburg and Malte Ku8.

I would never have reached this point without the support of Bernd Gombert which I owe
more than I could express here. Furthermore, there were several people which strongly
influenced me during my time at Logitech and the DLR. One person was Volker Senft
which always challenged every academical reasoning for practical applicability. I tried to
adopt his healthy skepticism for my scientific attitude. The other main mentor at that
time was Holger Weiss, who mainly motivated me to reconsider my whole life and was
one of the main reasons to leave industry and start the Ph.D. program at the Max-Planck
Institute.

Finally I would like to thank my family and my wife for all their support. Thank you all!

Notation and Symbols

In this thesis the following list of symbols and abbreviations is used unless stated otherwise.

Reproducing Kernel Hilbert Space associated with kernel z
Feature map ¢, : X/Y — F,
Input domain
Output domain
Product space of X and Y
Dimension of output space dim)
Dimension of input space dim X
Tr Mapping between Reproducing Kernel Hilbert Spaces
tz Mapping between sets X and Y
Dy Training set consisting of N points {z;, 3}, or just {z;}Y,

SR N%R‘.@N&ﬁ

Chapter 1

Introduction and Preliminaries

The fundamental goal in robotics is to build machines which are smart and versatile
enough to act in as diverse fields as a human is able to act. A key ability of humans which
any robot lacks is to learn from example behavior observed from humans. This ability is
called imitation learning. A particular key problem to imitation learning is the ability to
infer the state of an actor in the perceived environment and being able to map perceived
informations into own actions. In particular we will focus on the scenario where a human
actor is moving his right arm while a camera is watching the human actor. A computer
analyzes the human pose and has to command a robot manipulator with seven degrees
of freedom to a state which resembles the observed posture as shown in figure 1.1. In
this thesis we treat this particular problem as a single approximation problem where our
imitation map has the form

t : Observation of Human Action — State of Robot.

The problem with such a formulation is that the imitating map is not necessarily a function
in the usual sense since the output map is not necessarily a vector space. Thus we consider
the problem of estimating a map between arbitrary input and output sets. To this end, we
investigate and extend an existing machine learning algorithm based on kernel functions —
Kernel Dependency Estimation (KDE) [99] — which is capable of learning in this general
setup.

The purpose of the following sections in this chapter is to give the necessary background
material for the theoretical concepts used. In the first section, we discuss relevant concepts
of learning and regularization, whereas in the succeeding section we introduce the concept
of kernels and feature spaces which are crucial for the application of KDE. In the final
section in this chapter we review the KDE algorithm in detail and give an overview of the
thesis.

1.1 Supervised Learning

A key step in building robots which can act in an unknown environment is the ability
to perform predictions of future states from past observations. In this thesis we utilize
the paradigm of supervised learning meaning that an external supervisor presents a set
of examples which consist of input patterns and corresponding output patterns. It is
expected that the learner generalizes to inputs it did not see before. Let us formalize this.
In supervised learning a learning algorithm A is given a set Dy of example pairs of inputs
x; € X and desired outputs y; € Y and a set H of possible hypotheses. The task of the
learning algorithm is now to choose a hypothesis t € H according to an induction principle.

4 CHAPTER 1

Figure 1.1: Our robot while imitating a human pose.

For example, a straightforward induction principle is to choose the best hypothesis ¢ which
explains the given examples perfectly:

t e {t]t(a;z) = yz}

But, since we are interested in a generalization performance after a teach in phase we
are not interested in a hypothesis which predicts best on the training inputs but on other
unseen examples. To this end, let us introduce a cost function [which will serve us in
assessing the performance of an individual hypothesis. We define the cost function as

l(x,y,g):é\,’ Xy Xy_)R-l-v

and its task is to measure the cost of mismatch between predictions g := t(x) and the true
y, given a particular data pair (z,y) € Z and Z = X x). Trivially, the best generalizing
hypothesis t* could be chosen if one just would have knowledge over all possible future
examples, i.e. if one would know the joint distribution function P(z,y). In this case
minimizing the expected loss is guaranteed to be the best choice:

t* = argmin Rp[t] := argmin E(,) p(z) (7,9, 1(z)) .
teH teHd

Thus, if we know the underlying distribution P(z) of all future inputs x and the conditional
distribution P(y|z) of the outputs y we would be able to construct the statistically optimal
hypothesis. Unfortunately, this is rarely the case in practice since we have only a finite set
of examples Dy and thus a limited knowledge of the joint distribution P(z, y). Nevertheless
we can use the Empirical Risk Minimization(ERM) induction principle which chooses a
hypothesis that yields the minimum empirical loss on Dy:

N
. 't
temp = arg min Reyp[t, Dy := arg min N Z Wi, yi, t(zi)). (1)
teH teH P

Fortunately, due the following theorem T1.1 by V. Vapnik [95] we have the guarantee that
temp Will approach ¢t* with an increasing number of examples: 1

!"'We assume that our hypothesis class H consists of hypotheses such that all integrals of the form
sup,c Rp[t] < oo are finite.

INTRODUCTION AND PRELIMINARIES 5

Theorem T1.1 ERM is consistent. Vapnik [95, chapter 3]
Let Rplt] be the expected risk

R]P’ [t] = E(:}:,y)wP(z,y)l(x7 Y, t(l’)),

which measures the average cost over all possible predictions the hypothesis has to perform.
Given the empirical estimate Rempt, Dn| of Rp[t] where Dy is a finite sample from P(x,y)
the following holds for all € > 0:

lim P (sup |Remp(t, Dn] — Rplt]| > e) =0. (2)
teH

N—oo

The theorem tells us that Repmplt, Dy| converges to Rp[t] even in the worst case with
increasing IV and therefore is of asymptotic nature. For a finite number of samples however
the empirical measured risk Rep,, is almost surely lower than the expected risk [95]. Indeed,
it can happen that a chosen hypothesis has empirical risk zero (our model explains the
finite set of observations perfectly), but the average prediction error for all expected inputs
is larger than zero. An analysis of upper bounds on the expected risk, as was done by
Vapnik [95], reveals that another quantity is crucial for generalization: The capacity of
H. The capacity of a hypotheses set H can be understood as a measure for the amount
of data which can be explained by some hypothesis in this set. For example, a valid
capacity measure is: What is the size of the smallest data set Dy which will lead to
inf; Remp(t, Dy] > 07 Or in plain words: What is the size of the smallest data set Dy
that I can not explain anymore with any of my available hypotheses in the set H. ? Now
almost all upper bounds which uses the concept of capacity have the form:

R]P’ S Remp[tyDN] + \}NC(H)’

where the first term on the right side is the empirical risk and the second term is some
measure on the capacity of H. If the amount of training data is large, the confidence
in choosing a hypothesis based on the empirical risk is high and the influence of the
capacity might be negligible. On the other side, if the amount of training data is low
and the capacity of the used hypothesis set H is big, it might happen that by accident
a hypothesis in H explains only the training data well. This phenomenon is known as
overfitting and is of central importance in machine learning. To avoid overfitting one
usually accepts a trade-off in explaining observations in Dy and exploring the set of all
possible hypothesis. This is the main concern of reqularization which we discuss next.

1.1.1 Regularization

The key idea in regularization can be formulated as incorporation of a priori assumptions
about the desired solution ¢ to control the gap between R, and Rp and thus to control
the exploitation of the hypothesis set H. To this end one extends the minimization problem
in (1) with a so called sympathy functional[39] Q[t] : H — R, which encodes a preference
for solutions. An example how to extend the minimization problem is by adding Q[t] to
obtain the new minimization approach

h = argmin Repy[t, D] + Q[t],
teH

2For some possible capacity measures used in learning theory, see for example [95].

6 CHAPTER 1

or alternatively to use it as a constraint

t = argmin Reppt, D]
teH

subject to Q[t] < n,

provided a level parameter n € R. We will encounter the latter form of regularization
in chapter 2. As an example for a sympathy functional Q[¢] consider the distance to a
preferred skeleton solution to (for a detailed discussen see e.g. Hofmann [39]) 3

Quo[t] = Allt — tol 7, (3)

or for example if ¢ is a function then [t] can penalize properties of ¢ such as smoothness
or variation [39] , e.g.:

Qult) = A5 hll (4)
=1

The coefficient A € R in (3),(4) is used to control the trade-off between fit and sympathy
functional and is mostly determined by cross-validation [39]. A simple extension to (3) is
the widely used minimum norm regularization functional where the preferred solution ¢
is zero and thus the regularizer is of the form

Qolt] = Alltl|Z- ()

The minimum norm functional is the most studied regularizer in the literature. In the
next section we will see a geometric interpretation for the case of classification and discuss
why the addition of minimum norm sympathy functional controls the gap between Rey,)
and Rp.

In contrast to extending the minimization problem with a regularization functional,
a different, quite algorithmic approach is to stop before finishing minimization. This
approach, called early stopping is widely used in the neural network community and aims
also to perturb the minimization of R, but more in a rather uncontrolled manner. In
chapter 2 we will encounter an algorithm called Partial Least Squares which uses an early
stopping approach. Since early stopping is an uncontrolled regularization mechanism we
will propose an alternative based on other regularization functionals. In the following two
sections we will give in the following two concrete examples for supervised learning tasks:
The task of classification and regression.

1.1.2 Classification

In the section we will restrict X to be a real d-dimensional vector space R%. The task of
classification is to construct a hypothesis when the output is restricted to 1 or -1 denoting
a yes/no decision. For example the task to detect a human in the image can be posed
as a classification problem. Thus, we are given a set of input vectors z; € R? and their
corresponding class information y; € {1,—1} as training data set Dy = {z;,%:}Y,. A
natural loss function [in this setting is the zero-one or yes/no loss

loj1(z,y,t) = { L ify 7 i)

0 else

3For example as in the Kalman filtering algorithm where to is the previous solution. This ensures a
smooth change of ¢ over time.

INTRODUCTION AND PRELIMINARIES 7

For the ideal case that we have a statistical model of all possible inputs P(z) with the
corresponding label information P(y|x) one can show that the the optimal classifier for
the zero-one loss function is the so called Bayes classifier ¢pgyes which is given by:

tBayes(z) = { i‘i eilfse P(y = +1|z)P(x) > P(y = —1|z)P(x)

Practically, since one does not have these statistical informations one has to use the ERM
principle together with a regularization scheme. Before we discuss how the ERM principle
can be implemented for classification in detail, we have to agree upon a hypothesis class
H. In this thesis, we will be mainly concerned with the class of linear hypotheses, i.e.:

H= {(w,b)|wT:z: + b, where (w,b) € Rd+1},

and thus the final hypotheses for classification takes the form t(z) = sign(w ' z+b). Having
agreed on the hypothesis class, how can we implement ERM for classification? It turns out
that this is a very difficult task since minimizing the zero-one loss gives rise to a discrete
optimization problem. Therefore, we need to use a loss function being more amenable to
optimization. For example, in [95] it was suggested to use the linear loss function:

1—y(w'z+0b ify(w'z+0) <1
h@%ﬂ—{ e t) ifylu's +)

A modern classification algorithm which can be interpreted as using this linear loss in
combination with minimum norm regularization is the support vector machine (SVM)
[95]. * The crucial point for SVM is that minimizing the norm leads to maximizing the
margin p between the classes and the decision surface. This can be seen readily from the
prediction equation. Denote by d; = w'x; + b the distance of point z; to the (linear)
decision surface. The gap between the classes is obviously inverse proportional to this
distance and thus to the norm of w. Now, to be useful across different models w1, wo of
possibly different scale, we need to declare that the closest points Z; to the decision surface
should have distance 1, i.e. min; d; = 1. Given this common scale for two models w; and
wg we can compare two models according their implied gap. A larger gap (and thus a
hyperplane with smaller norm) is favorable since a model with smaller norm leads to a
bigger class gap and therefore is likely to be more robust to variation in the data. This,
geometrically quite convincing principle is based on the following fact due to V. Vapnik
[95]:
Theorem T1.2 Radius Margin Error Bound

Consider the set H of linear hypotheses, with t € H = sign(w'x 4+ b) and ||w|| < 1, and
assume that the data have compact support, i.e. ||z|| < R, Ya. For all distributions P
generating the data, with probability at least 1 — & the probability that a test pattern drawn
from P will be misclassified is bounded from above, by

RMS&WM+¢;<gMMN+m@m>

where ¢ is a constant, and N is the number of training patterns.

“Note that the original term for complexity control used in [95] is structured risk minimization (SRM).
The idea of SRM is to construct a sequence of nested hypothesis classes H;y C Hy C --- C H of increasing
complexity, and if two solutions ¢;,¢; in H; and H; respectively perform equally well, choose the hypothesis
which belong to the set of lower complexity.

8 CHAPTER 1

Thus, for SVMs one has to find a trade-off between minimizing the training error (the
first term of the upper bound in T1.2) and maximizing the margin (the second term of
the upper bound). This can be formulated as the following optimization problem

Minimize Norm! / Maximize Margin!
——

1
(w*,b") = arg min 5l ? (6)
Wb 2

Classify Correct!

subject to Ui (wT:zzi + b) >1, 1<i<n.
Using additional slack variables & € R for each point x; one can extend (7) to the
non-separable case:

Minimize Norm / Maximize Margin! Minimize [y loss!

’1] n
(w*, b*) = agggmin 5||w||2 + A& (7)
w,0, i=1

Classify as correct as possible!

subject to Yi (wai + b) >1-&, 1<i<n,

where A > 0 is the regularization coefficient controlling the trade-off between minimizing
the empirical error and maximizing the margin. An alternative way to write (6) and (7) is
based on the so called dual formulation (see e.g. [24]) of a convex optimization problem.
Let us give the description of the dual formulation of (7) in algorithm Al.1. In the case
of (7), the dual can be easily derived by forming the Lagrangian

N N N
L(w7b7€7a71/) = %Hsz + Azgz - Zai <yz (wai +b) -1 +§z) - Zl/zfz
=1 =1 =

The optimal solution can be obtained by considering the critical points of L (for a detailed
derivation, see for example [78]). In contrast to the dual formulation, the problem (7) is
also called the primal formulation.

Whenever we face a classification problem in this thesis, we will use the SVM algorithm.
Let us now proceed to the complement to classification: The case of regression.

Algorithm A1.1 LINEAR SUPPORT VECTOR MACHINE

Given N pairs {(z1,%1),-- -, (xn,yn)} € {R? x {—1,+1}} and a regularization coefficient A € R
the support vector machine (SVM) algorithm generates a classifier w* =)., ajz; with o*
obtained by the following optimization problem:

1
o = argmin ~a' Ho—a'l (8)
a€eRN
subject to 0 < a <A andy' a=0 (9)

where H = diag|Y]Kdiag[Y], K;; = 2 z; and diag[Y] is a diagonal matrix with diagonals equal
toy; withi,j=1,...,Nand A >0 .

INTRODUCTION AND PRELIMINARIES 9

1.1.3 Regression

The task of regression is to construct a hypothesis when the output is considered to be
real with) = R°% 0 > 1. For the case that o = 1, the regression problem is said to be
univariate, whereas for the case that o > 1 it is said to be multi-variate. As in the case of
classification, let us restrict ourselves to the set of linear hypotheses such that ¢(z) = Wz,
with W : X — Y and W € R°*?. In the noise-free case, the best hypothesis in H ideally
fulfills the interpolation condition t(x;) = y;, 1 <4 < N for all points in the training set
Dy. However, in working with data obtained under real world conditions one will rarely
succeed in finding a perfect interpolant in the hypothesis set. Therefore a loss function
l(xz,y,y) has to be considered which has to increase the more ¢y deviates from y. The
following table shows some common used loss functions in the literature:

Loss function Name
lly — t(x)|]1 Least Absolute Deviation
lly — t(2)||5 Squared Error
max(||ly — t(z)|]1 — €,0) e-insensitive

The most widely used loss function in practice is the squared error. Its popularity can be
explained by the following two reasons:

The assumed noise model We assume that the observed data Dy is generated by a
true linear relationship among the input and the output but that we observe corrupted
outputs. A reasonable assumption is to assume that the corruption is in form of an
additive noise term denoted by & which is purely random and can be modelled as a zero
mean Gaussian variable. For simplicity let us assume in the following that this Gaussian
is isotropic. Furthermore we assume that the error is independent to the input. Thus, the
observation equation takes the form

yi =W+ €~N(0,02).

Given the data Dy the corresponding likelihood function of the model W is given by

N
L(W|DN, O') X H expf%%((yi*Wzi)T(yi*Wxi)) .
i=1
Thus, the hypothesis which yields the highest likelihood under the assumption that the

error is Gaussian can be obtained by W = arg maxy, L(W|Dy, o). Taking the logarithm
of the likelihood yields the identities

N
W = argmaxy log L(W|Dy) = arg maxy, — Z(yz — W) (ys — Way)
i=1
N
= argming Y [lyi — t(x7)|[3
i=1

This shows that, the squared error is the natural loss function to take under the assumption
that the noise is additive and Gaussian.

10 CHAPTER 1

Simplicity: Consider the following identity for the summed squared error of all elements
in Dy:

N
Sy = Wayl]? = tr(y = WX)T (v —WX),
=1

where we have arranged all input and output observations as matrices X = [z1,...,2n]
and Y = [y1,...,yn]. If we take now the derivative of the right side w.r.t to W and
identify critical points, we obtain the relationship WX X" = Y X T and thus the direct
solution:

W=vx"(xx")L (10)

Consequently, if we use ERM with the squared error loss function we can compute
the optimum hypothesis analytically. However, as one might guess from the form of the
solution already, the inversion of the matrix X X " might lead to difficulties. Consider the
case that all inputs x;, z; live in a subspace R" with v < d. In this case, the matrix XX T
will be rank-deficient such that inversion is not possible anymore. The reason is that there
exists not a single unique solution. Quite the contrary is the case: A whole space of valid
solutions with W = W, + W, | exists and the new task now is to choose one of them. The
way out of this dilemma is again to use a sympathy functional Q[W] which favors solutions
with special properties. The most widely used sympathy functional for linear regression is
the minimum norm regularization scheme which leads to the new optimization problem:

W = argmmi/n L(W) = argr%‘i/n tr(Y —WX)' (Y —WX) + \|W|3.

By taking the derivative and identifying the critical point

aL T T !

— =WXX —-YX AW =0,

oW *
we see that the minimum norm regularized least squares problem can also be solved
analytically

W=YX"(XXT+x1)"",

which is quite convenient. The algorithm which solves the minimum norm regularized
least squares problem is called ridge-regression [38] and we show in A1.2 the dual version
for the univariate case.

Algorithm A1.2 RIDGE REGRESSION

Given N pairs {(z1,91),...,(xn,yn)} € {X x R}V, and a regularization coefficient A € R the
ridge regression algorithm generates a predictor for the problem

N
w=argmin » (w' ¢x(x:) — yi)* + A |wl[*. (11)
w

i=1
The solution to the dual problem with w = Zfil o) x; is analytically given by
= (K+A1)7YY, (12)

where K;; =z z; and Y = [y1,...,yn]".

INTRODUCTION AND PRELIMINARIES 11

So far we have constrained ourselves to linear hypotheses. To obtain nonlinear rela-
tionships we would need to change our hypothesis set which would imply considering new
algorithms as well. However, we can keep the hypothesis set and thus our introduced
algorithms and instead nonlinearly transform the inputs. For this purpose, we use kernels
which we want to introduce in the following section.

1.2 Beyond linear models: Kernels

In this section we introduce the idea of kernel functions which is a fundamental concept
used throughout in this thesis. The basic idea is to map the input data mapped into
some other space F = ®(X) such that ideally the nonlinear relationship among X and
Y is now a linear relationship between F; and). As denoted above we will denote this
mapping ¢ : X — Fi. A very intuitive way to think about ¢ is to consider it as a blind
mapping which does not care about the task and evaluates a huge amount of non-linear
functions e; : X — R, 1 < i < dim Fj. The new vector ¢(x) = [e1(z), e2(x), . ..] specifies
the coordinates of ¢(x) in the so called feature space Fj. Now, we can use any linear
algorithm which takes ¢(z) as input and try to learn a relationship between X and) via
the transformed inputs ¢(x). Why is this a good idea at all? In general it is not, since we
might have to deal with high-dimensional or even infinite dimensional vectors ¢(z) and
direct operation on these vectors is not feasible. Let us reconsider algorithms Al.1 and
A1.2. Obviously, for prediction we just need the dot product y = w' ¢(x) +b. What about
training? Since we have given the dual formulation, we see that in the algorithms above
at no point we would use the vectors ¢(z) explicitly but again only dot products. The
question is now, whether we can evaluate dot products for any given mapping ¢ without
considering the elements of ¢(x). Unfortunately, the answer is likely to be no since one
might think about mappings ¢ that require explicit representation of ¢(z). However, if
we can reformulate the question as: Are there any mappings ¢(z) which correspond to a
nonlinear transformation where the dot product can be evaluated without considering the
elements of ¢(z)? Fortunately, we can affirm this question. As we will see in the following,
there exist functions k£ : X x X — R which correspond to an Euclidean dot product in
some feature space Fj, which is, in general, different from the representation spaces X and
Y. Furthermore, in practice we will only consider this kernel function k& without worrying
about the implicitly used ¢ mapping. To emphasize that the ¢ is implicitly given by the
kernel function k& we will use k as a subindex and write ¢p. Instead of performing the
expensive transformation step explicitly only, the kernel is evaluated and thus the feature
transformation is performed only implicitly. Let us now give a formal definition of a kernel
function.

Definition D1.1 Kernel Function [78]: Let Z be a set. A symmetric function
k:ZxZ — Ris akernel on Z if the induced quadratic K;; = k(x;,x;) is positive definite,
thus if

n
Z oziajk:(mi, CCj) = aTKa
1]

is greater equal zero independent of the choice of [aq,...,ap] and {x1,...,2,} € Z.
Thus, whenever we have a function with the properties in D1.1 we know that it is the dot
product according to some possibly nonlinear mapping of the data. The image Fj of the
implicitly defined feature map ¢ : X — Fj is called a reproducing kernel Hilbert space.
For a functional analysis point of view of kernel functions see [78].

In this thesis, we will also consider data which consists of structured objects such as

12 CHAPTER 1

graphs or sequences. For these data types it is natural to construct a combined similarity
measure from other similarity measures considering partial aspects of the objects only.
For example a similarity measure between face images could be combined from similarity
measures between eye colors and lip contours. In such situations we will use the following
very convenient properties of kernel functions:

Lemma L1.1 Closure [78]:

Kernels are closed under addition and multiplication. Thus, given that k1, ..., k; are kernel
functions it follows that k is a kernel function provided that

l
a) k(z,2") = > ajki(z,2") Vi:a; >0,
=1

1=

!
b) k(z,2") = ‘1;11 ki(z,2).

¢) k(xz,a)

f@)f(@) and f: X — R arbitrary.

Now given that we have introduced the kernel function, let us give in table 1.1 some
examples for kernel functions with their implicitly used feature map ¢ (x)(see [78, 85]).
The kernel function encapsulates the data from the algorithm and thus allows us to use
the same algorithm on different data types without changing any line in the implementa-
tion. Thus, whenever an algorithm can be expressed in kernels as for examples algorithms
A1.1 and A1.2 which uses the standard linear dot product (which is a kernel), it can be
extended to the nonlinear case by exchanging the kernel function. Finally, let us state the
following theorem by [50] which shows another strength of kernel methods.
Theorem T1.3 Representer Theorem [50]
Given some data points Dy = {x;, yl}f\il and under the constraint that f € Fi, the solution
w* of the variational problem

N

w* = arg minZE(yi,xi, w' ¢p(x;)) + Qw] (13)
i=1

has the form:

N
w* = Za@k(acz) (14)

Theorem T1.3 states that whenever we are looking for the optimal linear hypothesis and
our hypothesis is element of a reproducing kernel Hilbert space Fy, it is sufficient to look
for the expansion coefficients & € RY. Thus we are ensured that the best hypothesis is
in the span of the mapped data points {¢(x1),...,¢r(zn)}. Unfortunately, for practical
applications this will be sometimes a disadvantage. Consider the case that we are given

Kernel Function Implicitly used feature map
x{ T2 id: ¥ — X
(z] x2)? ¢r(x) : X — All monomials of order d
expW(xle) ¢r(z) : X — All monomials

Table 1.1: Some kernel functions and their implied feature maps.

INTRODUCTION AND PRELIMINARIES 13

a large amount of data points and we would like to obtain a predictor used in a real-
time robot control setting. Whenever we want to perform a prediction w*Tgbk(x*) for a
new point x*, we might be forced to evaluate a kernel function for the whole expansion
in (14). Clearly this is not always desirable, and we might need mechanisms to post-
process the finally obtained hypothesis such that prediction can be performed with less
kernel evaluations. The fewer points we are required to keep the fewer kernel functions
we need to evaluate. This desirable property is called sparsity. We explore in chapter 4
post-processing techniques to obtain sparse expansions.

Sometimes, the operation of an algorithm can not be expressed in dot-products only
and thus we can not use kernels directly. For example, in chapter 2 we introduce a linear
regression algorithm which uses a sympathy functional leading to operations that can not
be expressed with dot-products only. In this situation, we still would like to use this linear
algorithm for non-linear scenarios and avoid accessing entries of ¢y (z). Fortunately, we
can use the fact that given N points as training data the optimal hypothesis must be in
the span of these N training data. Thus instead of considering all coordinates of a vector
or(x), it is sufficient to project ¢(x) on the N-dimensional subspace spanned by the
training points and to consider coordinates in this N-dimensional subspace only. We thus
need to construct an orthogonal basis V' = [vy, ..., vy] such that V spans the same space
as the training set. Given such a basis we can then project a new mapped point ¢ (x)
onto this basis by V' ¢y (z) = [v{ ¢r(x),..., v ¢K(x)]. Note, that the projection requires
the calculation of dot products only. Clearly, all v; are in the span of the training data,
thus we are ensured that there exists coefficients a/ € RN such that v; = >, of dp(z;).
The question is now which orthogonal basis to choose, since there are infinitely many
possible ones. A classic (linear) algorithm is principal component analysis (PCA), trying
to align the basis elements v; such that the empirical variance along v; is larger than v;
for 7 < j. The basis elements are called principal directions, the extracted coordinates are
called principal values. For a discussion on PCA see [44]. In A1.3 we show the kernelized
version of PCA due to [80] which we abbreviate as kPCA.

Now that we have introduced kernel functions and their use in supervised learning
algorithms we are ready to explain the method of Kernel Dependency Estimation.

1.3 KDE

Learning general functional dependencies between arbitrary input and output spaces is
one of the main goals in machine learning. As we saw, classical supervised learning frame-
works deal with the case that the outputs are) = {0,1} for classification or)) = R
for regression. As we have discussed above kernel functions on the input side encapsulate
the type of the input data from the algorithm. Thus the remaining difference between

Algorithm A1.3 KERNEL PRINCIPAL, COMPONENT ANALYSIS

Given N patterns {x1,...,2x} € XY and a kernel k : X x X — R the kernel PCA algorithm
generates N feature extractors v; = f% sz\; algp(w;) with j =1,...,N and o/ € RY obtained
by the eigenvalue problem:

>

Kol = Njaj (15)

where Kij = k(xq,x])

14 CHAPTER 1

regression and classification are due to the different output type. Indeed, if) is not a
subset of R but a general set, it cannot be easily modelled well in the standard settings
of regression or classification. In this sense, the output data type dictates the choice of
the learning algorithm. ® For example, if the target is a real vector the algorithm might
minimize the squared distance between prediction and target, whereas if the target is a
string, the algorithm might minimize a distance measure appropriate for strings (for ex-
ample the Hamming distance or the edit distance [85]). Classically, the implementation
of a supervised learning procedure depends on the nature of the output. The idea of Kernel
Dependency Estimation [99] is to use the kernel idea not only to encapsulate the inputs
but also the outputs. Thus the same algorithm could be used independently of the input
and of the output data-type. Let us look at the KDE algorithm in more detail.

1.3.1 A rough sketch: Divide and Conquer

Assuming that the loss function [:) x) — R depends only on the output, it can be
interpreted as a metric measuring the distance between targets and predictions in the
output space. This alternative interpretation of the loss function allows us to think of a
hypothetical space F; associated to the loss function [with the following properties:

a) Elements y of F; are obtained by a possibly nonlinear map ¢; :) — Fj.

b) The Euclidean distance among two points ¢;(y) and ¢;(¢) in the space F; equals to
the loss I(y, 9), i.e.:

ou(y) — @)z = Ly, 9).

If such a space F; exists, one could use a learning algorithm that selects the mapping ¢ :
X — Y by minimizing the squared loss in F; instead of the problem or data-type-dependent
loss function [. Thus, with ¢(z;) being our predictions, we obtain the equivalence

N

= argtminzl(yi,t(xi)), (16)
7,;1

& argtminZH@(yi)—¢z(t(fvi))|!2- (17)
=1

What is the advantage of doing so? As we saw above, the squared error is used in a regres-
sion setting. Thus right now, provided that we have a map ¢; we turned our supervised
learning problem into a squared-error regression problem. From now on, as for the input
case, we will only consider those ¢; which are implicitly given by some kernel function im-
plying that F; is a reproducing kernel Hilbert space. Using now a kernel function for the
output data that encodes information about the used loss function, we have encapsulated
all information regarding the outputs in the kernel function. Let us denote such an output
kernel function by k, and rewrite (17) as follows:

N
= argtminz i (yi) — du(t(x:)]]?
’L;l
= afggﬂinz ky(yi, yi) + by (t(z3), t(xi)) — 2Ky (E(2i), vi)- (18)
i1

5Note, that in the past this was a quite basic property of the choice of computer algorithms in general.
The implementation was coupled to the processed data types. The principles of programming changed
with the appearance of the object orientation[88] and the design pattern [26] frameworks.

INTRODUCTION AND PRELIMINARIES 15

As one can see from (18) this optimization problem is likely to be hard to solve. However,
we can split this optimization problem into parts by dividing the mapping ¢ into:

t=ToTod, (19)
where

e ¢ is the feature map, embedding elements from input space into the feature space
Fi.. This encapsulates the input data.

o T : F; — JF;is the unknown map operating between feature spaces, which estimates
a point y € F; in the output feature space given a point @ = ¢ (z) in the input
feature space.

o [': 7; — Y is the pre-image map which maps elements of F; back to the original
output space). (Ideally it is the inversion of ¢, i.e. I' = qbl_l, see below)

Now, we have obtained a data-type independent regression problem: Choosing the right
map T among the feature spaces. Once we provide mappings ¢, ¢ and the pre-image
map ' we solve the inference problem in feature space. Note that the maps ¢;, ' are
independent from the input and likewise ¢, depends only on the input. Therefore, choosing
these maps does not require to solve the original learning task and therefore is easier than
the original problem at the beginning. Furthermore, although it looks difficult to choose
the operator 7', note that in principle it is a standard multivariate regression problem. To
see this, given any finite data set Dy, we can apply kPCA (see A1.3) to the input and
output data independently and retrieve the orthogonal bases W and V. Once we have
obtained these bases we can extract input and output coordinates of ¢y (x;) respective
W and ¢;(y;) respective V yielding the new coordinate representation of the training
data: DN = {a%z,g)z}fi ; with 2;,9; € RV, Using the coordinate representation we can
then use for example a standard regression algorithm like ridge regression (see Al.2) to
obtain the mapping T : RN — RN . Thus our final operator is given by the concatenation
T = VoToW. To make the difference between the map 7T and T more explicit we denote
the map between feature spaces by Tr : Fr, — F; and as a counterpart the original map
astz : X —)Y, with Z =X x).

Note that given the same input and output kernels, different coordinate representation
of the input and output data will give rise to different regression problems. For example if
the data is collinear in feature space, one can try to restrict the dimensionality first. This
is the basic motivation for regression algorithms we explore in chapter 2.

Once we have obtained our map 7' we can use it to predict the output coordinates of
a new presented input point ¢y (z*). Now, since at the end of the day we have to predict
elements from), we need to generate an element from)’ such that ideally

Tor(z™) = di(y™).

This is the job of the map I' : /; —) which ideally is the inverse of the output feature
map ¢; and therefore is as well problem-dependent. ¢ Unfortunately, it will often turn
out that I' will not be the exact inverse of ¢; since the inverse will not exist and the
point T'¢y(x*) does not need the have a valid pre-image. We will investigate in chapter 3
techniques and possible strategies to solve pre-image problems. Finally, let us summarize
all decompositions and maps in KDE in figure 1.2.

5Note, however that it is independent of the input.

16 CHAPTER 1

Figure 1.2: Mappings between original sets X,) and corresponding feature spaces Fj, F; in
KDE.

1.4 Structure of this thesis

The first part of this thesis will focus on various algorithmic extensions to this algorithm
not focusing on the imitation learning task but keeping the scope very general allowing the
techniques to be used in other fields as well. In particular we will introduce in chapter 2 a
regression method which aims at identifying relevant subspaces in high dimensional input
and output feature spaces relevant for prediction during the learning stage. In chapter
3 we discuss algorithms for the pre-image problem which is the most critical issue in the
usage of KDE. In addition man-machine-interaction requires following human actions in
realtime. Since in general kernel methods tend to be too slow for most applications in
robotics, in chapter 4 we investigate algorithms which can be used for post-processing
models obtained from kernel algorithms to increase the testing speed. In the last part
of this thesis we apply the method of KDE to the task of imitating pose. We start in
chapter 5 with an approach based on perfect environmental knowledge which allows us to
formulate the imitation problem as an optimization problem. Afterwards in chapter 6 we
investigate a different approach based on the KDE algorithm. Figure 1.3 can be used as
reading guide.

N
NV

Figure 1.3: Chapter dependency.

Part 1

Kernel Dependecy Estimation

17

Chapter 2

Multivariate regression via Stiefel
constraints.

Wissen und Konnen ist wie Bliite und Frucht.
— Holger Weiss —

One important subproblem in the framework of Kernel Dependency Estimation(KDE)
1s the problem of multivariate regression, that is to estimate from a given coordinate input
vector x € RN the coordinates of an output vector y € RN. This chapter introduces a
novel multivariate regression technique based on regularization via rank constraints, which
1s particular suited to problems with high-dimensional outputs.

2.1 Introduction

The problem of regressing between a high-dimensional input space and a continuous,
univariate output has been studied in considerable detail: classical methods are described
in [35], and methods applicable when the input is in a reproducing kernel Hilbert space
are discussed in [78]. When the output dimension is high (or even infinite), however, it
becomes inefficient or impractical to apply univariate methods separately to each of the
outputs, and specialized multivariate techniques must be used.

In this chapter we propose a novel method for regression between two spaces R% and R,
where both spaces can have arbitrarily large dimension. Our algorithm works by choosing
low-dimensional subspaces in both R? and R for each new set of observations made, and
finding the mapping between these subspaces for which a particular loss is small.! There
are several reasons for learning a mapping between low-dimensional subspaces, rather than
between R? and R? in their entirety. First, R? and R° may have high dimension, yet our
data are generally confined to smaller subspaces. Second, the outputs may be statistically
dependent, and learning all of them at once allows us to exploit this dependence. Third, it
is common practice to ignore certain directions in the input and/or output spaces, which
decreases the variance in the regression coefficients (at the expense of additional bias):
this is a form of regularization.

Given a particular subspace dimension, classical multivariate regression methods use
a variety of heuristics for subspace choice.? The mapping between subspaces is then

!The loss is specified by the user.
2For instance, Principal Component Regression generally retains the input directions with highest
variance, whereas partial least squares (PLS) approximates the input directions along which covariance

20 CHAPTER 2

achieved as a second, independent step. These methods generally represent a compro-
mise between generalization performance and computational simplicity. By contrast, our
method, Multivariate Regression with Stiefel Constraints (MRS), jointly optimizes over
the subspaces and the mapping; its goal is to find the subspace/mapping combination with
the smallest possible loss. Drawing on results from differential geometry (see [23, 42]), we
represent each subspace projection operator as an element of the Stiefel manifold (see
[23]). Our method then conducts gradient descent over these projections. On moderately
sized datasets, the subspace/mapping estimation problem may be solved using a batch
method, in which optimization is carried out over the entire data set. When the data set
is large, however, this can have prohibitive computational and memory requirements. For
such cases, we propose an on-line variant of our algorithm, called Sequential Multivariate
Regression with Stiefel Constraints (S-MRS), which processes a series of small subsets of
the data, rather than requiring all of it at once. The sequential approach has two advan-
tages: it allows us to easily update our prediction in the light of new observations, and
to learn from large data sets by breaking the problem down into smaller learning tasks.
The choice of subspaces and mapping must then be constrained, in that both are not
permitted to change too much from those previously learned. This ensures that we do not
disregard past observations when new data comes in. The similarity of the new solution
to the prior solutions is enforced using a regularizing term, 3 which is added to the original
batch-based loss. A disadvantage of all optimization-based approaches is that the rank
constraint requires the optimization to be performed over a non-convex set. To overcome
the problems caused by non-convexity (e.g. local minima), we investigate in section 2.5 a
method which aims at finding the maximum a posteriori solution for a probabilistic model
using a sampling technique.

We begin our discussion in section 2.2 with some basic definitions, and give a formal
description of the multivariate regression setting (both batch and sequential). We then
summarize various classical methods for multivariate regression in section 2.3. In each case,
the relevant subspaces in R? and R° are described, and the heuristics used to determine
these subspaces are elucidated. Next, in section 2.4, we introduce the MRS procedure for
differentiable loss functions, in particular the ¢ losses, and the S-MRS procedure for the ¢
loss. In the case that the loss function is not differentiable we propose to use a maximum
likelihood predictor obtained by utilizing Bayesian inference via a Markov Chain Monte
Carlo approach. Thus in section 2.5 we introduce a probabilistic approach for MRS and
investigate the application of different loss functions.

2.2 Problem setting and motivation

We first describe our regression setting in more detail, and introduce the variables we will
use. We are given m pairs of input and output variables, Dy := ((x1,¥1),---, (Xm,¥m)),
where x; € F,, y; € Fy, and F, and F, are reproducing kernel Hilbert spaces with
dimensions [, and [, respectively. We write the matrices of the centered observations as

X::[xl xm]H, Y::[yl ym]H,

where H:=1— %ll—r, and 1 is the m x 1 matrix of ones.

with the outputs is high.

3This regularization should not be confused with the regularizer used in ridge regression, which can
also be used to constrain the solution obtained for each data subset; or indeed for the entire data set in
the batch case.

MULTIVARIATE REGRESSION VIA STIEFEL CONSTRAINTS 21

We now specify our learning problem: given observations X and Y, a loss function
L(Y,X,F(;)), and a regularizer ; (this can be for instance the 2-norm regularization as
in ridge regression: see section 2.4.4), we want to find the best predictor F,, defined as

Py = guin LY.X.G)+0u(G). (1)

where H, is the set of all rank-constrained linear mappings
Hery = {F :R? — R°|rank F = r} (2)

from the input space R% to the output space R°. This rank constraint is crucial to our
approach: it allows us to restrict ourselves to subspaces smaller than those spanned by
the input and/or output observations, which can reduce the variance in our estimate of
the mapping F(,) while increasing the bias. We select the rank that optimizes over this
bias/variance trade-off using cross validation.

We now transform the rank constraint in (1) and (2) into a form more amenable to
optimization. By diagonalizing the predictor F ;) via its singular basis, we obtain

.
Foy = VoSoWe (3)
where
.
Viy Viy = L, (4)
T
Wiy Wiy = T, ()
S € diagonal R™*". (6)

In other words, W,y € S(ly,r) and V() € S(lz,7), where S(n,r) is called the Stiefel
manifold, and comprises the matrices with n rows and r orthonormal columns. In the case
of the squared loss Ly(Y,X,F(,)) = [|Y — F,yX||%, finding a rank constrained predictor
(3) is thus equivalent to finding the triplet 6 = (V ,y,S(;y, W,y) for which

0 = argmin HY—V(T)S(T)W(T)TXH%, (7)
VS, Wi

subject to constraints (4)-(6) 4. We will refer to W,y and V) as feature matrices.

It is clear from (7) that W,y and V ;) determine particular subspaces in R? and R?
respectively, and that the regression procedure is a mapping between these subspaces.
A number of classical multivariate regression methods also have this property, although
the associated subspaces are not determined according to the criteria we propose or are
only applicable for a particular loss function. In section 2.3, we will review the subspace
selection methods used in three established regression algorithms, before returning in
section 2.4 to the solution of (7). First, however, we describe the on-line framework used

in S-MRS.
2.2.1 On-line setting

In the sequential case, we do not observe the examples all at once: rather, at every time
instance k, we obtain only m observations. These are written as

Xk := [Xy oo Xk,], Yy = [Yir - Yim]7 and Zj = [Xk?Yk]

4This is a more general form of the Procrustes problem, see [6], for which F(,y is orthogonal rather than
being rank constrained.

22 CHAPTER 2

The on-line setting requires (1) and (2) to be slightly modified: thus, for a particular

G € H(,), we can define a loss L(Zj, G) measuring the prediction error of G on Zj, and

a regularization functional Q,(G, Fgf; 1)) that penalizes large differences between G and

a reference mapping FE]:)_ U We then want to find the best predictor FEI;)) , defined as

F) = argmin £(Z, G, F(; ") (8)
GG'H(T)

= argmin L(Z;, G) + Q,(G, Fgl:)fl)). 9)
GEH(T)

We may understand the purpose of Q, by reference to the (non-sequential) ridge re-

gression method, for which Fgf)_ Y =~ 0 and

Q,(G,0) = |G|% :

in this case the regularization prevents the norm ||G|/% from growing too large. In the on-
line case, the reference mapping is the solution F(]:_l) obtained previously, in keeping with
our goal of choosing a new mapping close to the f)ormer solution. By way of comparison,
the Kalman-Bucy filter can also be written in the form (8) with an analogous reference
mapping, see [? |. The specific form taken by €, in our multivariate regression setting
will be described in section 2.4.5.

We again transform the rank constraint in (8) using the decomposition in (3) and
(4)-(6). Thus, for the kth set of observations, finding a rank constrained predictor (3) is
equivalent to finding the triplet 6 = (V), S¢,y, W(;) for which

0 = arg min ﬁ(V(T)S(T)W(T)T,Fgf)_l)) (10)
V(7‘)7S(T‘)7W(T‘)

subject to constraints (4)-(6).

2.3 Existing Multivariate Techniques

In this section, we review existing techniques for reduced rank regression. In particular
we consider reduced rank regression (RRR), principal component regression (PCR) and
partial least squares (PLS), paying particular attention to the way in which a small number
7 of features is chosen. We will discuss the different construction of the mappings F, (the
features may be chosen in the input or output spaces, depending on the algorithm; the
rank of the mapping is unaffected). We consider only the batch case for each algorithm.
Since each of these methods rely on the Lo loss

L(Y,. X, F()) = [[Y -FX|F, (11)

we begin with a description of the least squares solution associated with this loss, and
demonstrate how this solution changes when the inputs are projected onto a small number
of features. This solution is then used as a basis for principal component regression
(PCR) and partial least squares (PLS), although the choice of features differs between
these algorithms. Finally, we describe the reduced rank solution where the features are
obtained by solving an eigenvalue problem.

MULTIVARIATE REGRESSION VIA STIEFEL CONSTRAINTS 23

2.3.1 Restricted Least Squares Regression

The multivariate least squares solution is equivalent to [, separate univariate problems;
thus, we first describe the univariate case. We wish to solve
* : T 2

by = arg min Hy -X W(T)b‘ , (12)

where y| = [Y1 - Ym] H, and the solution f(,)* := W(T)bzkr) is expressed in terms of
a linear combination of the columns of W,y (i.e., the features) with coefficients b. Taking
the derivative with respect to b and setting this to zero yields

-1
* T T T
= (Wi ' XXTW()) W) "Xy,
and thus
-1
* T T T

It helps in interpreting the features if the columns of W, are orthogonal or conjugate,
but this is certainly not required. In particular, all that matters is the subspace spanned
by the columns of W, in that we can replace in equation (13) W) by Uy := Wy C
for any invertible matrix C and still get the same f(,y".

We now describe the multivariate case. In the absence of any restriction of the input
to a subspace, we would solve

F* = arnginHY—FXH%, (14)
ly 9
_ ‘y,j - f,jXH (15)
k=1

where y,;r and f,;r denote the kth row of Y and F respectively, ||-|| denotes the Frobenius
norm and F is [, x [,. An important point to note in (15) is that each coordinate in the
output y is predicted entirely using a particular row in F. A least squares solution is thus

(FT = (XXT)TXYT, (16)

which is the concatenation of the separate least squares solutions for the /,, individual rows
of Y. We can again project the input X onto W¢,; the least squares solution is then

(Fi")

which has rank at most r.

T TvxT -t TywyT
= Wy (Wi "XXTW(,)) Wiy XY, (17)

2.3.2 Principal Component Regression

The simplest method of selecting features in the input space is principal component re-
gression. We write the singular value decomposition of X as

_ Sw 0 Up " }
X=[Wo We | [0 Seyuw] [Uy |
where the r largest singular values are in Sy, and the [, — r smallest in S(;),. We can
approximate X using only R
X = WSeUp) '
where we retain the directions of X with highest variance (which are assumed to have
greatest significance in predicting y). The features W;) are then used in (17).

24 CHAPTER 2

2.3.3 Partial Least Squares in one and more dimensions

The method of partial least squares introduced by [101] is widely applied in chemometrics,
where it is known to perform particularly well in cases where the input data are highly
collinear. Our discussion in this section largely follows [20, 37] where the standard NIPALS
training algorithm is introduced. A modification in which PLS is performed in the dual
was proposed in [55], and the algorithm was kernelized in [72] and in [4] for use when the
output space is a reproducing kernel Hilbert space.

We again start with the one-dimensional case, since it forms the basis of the multi-
dimensional algorithm. We give two descriptions of the feature matrix W ;) := [Wi ... W]
obtained: the first, which is by far the best known, uses orthogonal features, whereas in
the second the features are conjugate with respect to XX . The subspaces spanned by
the features are in both cases identical, however. We initialize with Xy := X, and begin
at ¢ = 1. We then iterate the following steps over 1.

w; = Xi—ly (18)
tit]

X, = X1 (I - Erz > (20)
t]t;

A useful result is the following theorem:
Theorem T2.1
The factors t; are mutually orthogonal.

l=i

—iai tot)
Proof. After j > 1 steps, X(;j_1) = X(i_1) [=itj—1 <I t$> (”). Thus the rows of

X (i+j—1) are orthogonal to each of {t(i), e ,t(i+j—1)} (a special case being j = 1, and X;
having rows orthogonal to t(;). Then since t; ;) is a linear combination of the rows of
X(itj—1) (from (19)), it follows that t;) is orthogonal to t; ;) for all j > 1. O

Equation (20) can be rewritten more compactly as
T T
X; = [I - T (T T) T(i)} X, (21)

with Ty = [tq)...t@)]. It is proved in [37] that following r iterations, PLS yields a
predictor as given in (13).

A motivation often employed to justify PLS® is that the covariance between input
and output is used to weight each component of x when predicting y. This is certainly
true for the choice of the first feature wi = X 'y, which is equal to this covariance. This
explanation is less useful in subsequent iterations, however, since the features w; are not
chosen by projecting out W;_; from X, and computing the covariance® using this deflated
X .

®Note that PLS was originally derived in terms of a factor model, in which an underlying variable t is
assumed to generate x and y. This motivation justifies the deflation procedure, but gives an incomplete
view of the predictive performance.

AW
STf we did project out the previous w, our update (20) would become X = (I — %m) X(i—1) =
(ONC

e L

Xio1) (I - ;'(T’)it:’;) ; thus the intuition that the features maximize the covariance is only true to the extent
(2) "

that t approximates y. The SIMPLS algorithm, introduced by [18], in fact updates X by projecting out

w, although this algorithm also uses a deflation on y which causes it to return the same features w as

NIPALS.

MULTIVARIATE REGRESSION VIA STIEFEL CONSTRAINTS 25

In the univariate case, there is a more satisfying explanation for PLS performance than
the one given above, which is that PLS yields an identical solution to conjugate gradient
(CG) descent on Hy — XTng, with respect to the mapping f. The CG method, [86],
builds a feature matrix D ;) 1= [d1,...,d;] by setting each d;1; as close as possible to the

-1
direction of steepest descent at the present solution f(;) = Dy, (DE)XXTD@O D%Xy,

subject to being conjugate to all the columns in D ;) with respect to XX . The solution
returned after r steps is then obtained by setting W,y = Dy, in (13). The choice of
conjugate features D,y helps to explain the good performance of PLS when the inputs are
highly collinear”, and these features serve a clear purpose in minimizing the loss (being
approximately aligned with the directions of steepest descent).

The simplest method for generalizing to the multivariate case is to perform univariate
regression on each output variable: indeed, this was found to outperform the multivariate
NIPALS algorithm in [20]. This approach is obviously not feasible when I, is very large;
thus regression to a lower dimensional subspace in Fy is required. There are several
multivariate PLS methods that accomplish this task. We describe NIPALS, which is the
most widely used. Features are generated as follows:

w; = arg max w' X; ;Y 'YX |w (22)
[wil<1
t;t.
X; = X [I-—=2 24
’ Z 1< 6 m-) 2y

We note that w; is equal to the left singular vector of the empirical covariance X;_1Y T,
rather than using (18). Thus, writing as 1; the corresponding right singular vector, the
projections of X; and Y onto w; and l; respectively have the largest covariance of any
possible such projections. This conforms to a common intuition behind PLS in a single
dimension, namely that features are chosen so as to maximize covariance between input
and output. The deflation procedure in (24) again belies this interpretation, however,
in that we do not project the features w out of X. We again set W,y = W, after r
iterations, and use (17) in predicting y* for a test point x* (see [20, Theorem 3.2]). The
w; remain mutually orthogonal (as do the t;), which can be shown using the same method
as in the univariate proof. To our knowledge, however, there is no established link between
multivariate PLS and conjugate gradient descent.

2.3.4 Reduced Rank Regression

Where as the previous algorithms select the feature matrix a-priori or in a greedy manner,
reduced rank regression (RRR) selects the feature matrix by solving an eigenvalue problem
given that the Lo loss function is used. Suppose F* is the ordinary least squares estimate
as given in (16) and F,)" is the optimal reduced rank solution, then the following equality
holds

Y —F) X[} = [[Y —F'X + (F" — F(,,")X|[3 = ||[Y — F" X[+ ||(F" — F(,) X3,

since the space spanned by the least squares error Y — F* X is by definition orthogonal
to the space which can be spanned by X . Therefore, to obtain the best rank constrained

"A conceptually similar method to improve performance on collinear data is to use orthogonal features
following a pre-whitening step. This is not always numerically stable, however.

26 CHAPTER 2

predictor in the Ly sense we have to consider the term (F*—F(,y*) X only. Let the singular
value decomposition of F*X be USV ", then we can build the projector

P, =Vl 0][1,,, 0"V’

which projects elements in the space R° to the subspace corresponding to the first r right
singular vectors of the least squares predictions. Using the projector P, we can construct
the optimal rank r predictor in the Ly sense by F(,)* = P, F*. Unfortunately, this solution
relies on the least squares predictor which does not exist for collinear data. Moreover it is
only suited for the Lo loss without any further regularization.

2.4 Multivariate Regression with Stiefel Constraints

We return now to the original multivariate regression setting in section 2.2, and present a
direct solution of the optimization problem defined in (1) and (2).

We begin by noting that the alternative statement of the rank constraint (2), which
consists in writing the mapping F(,) in the form (3), still leaves us with a non-trivial
optimization problem (7). To see this, let us consider an iterative approach to obtain an
approximate solution to 7, by constructing a sequence of predictors Foyp - Fy, such
that

LX,Y,F(y.) > LX) Y,Fg (25)

i i+1)'
We might think to obtain this sequence by updating Vi1, 5;+1 and W, according to
their free matrix gradients g—\'ﬂgi, %|9i, and ;—VLV|9,L. respectively, where 6; denotes the
solution (V;, W;,S;) at the ith iteration (i.e., the point at which the gradients are eval-
uated). This is unsatisfactory, however, in that updating V and W linearly along their
free gradients does not result in matrices with orthogonal columns.

Thus, to define a sequence along the lines of (25), we must first show how to optimize
over V and W in such a way as to retain orthogonal columns. As we saw in section
(2.2), the feature matrices are elements on the Stiefel manifold; thus any optimization
procedure must take into account the geometrical structure of this manifold. The resulting
optimization problem is non-convez, since the Stiefel manifold S(n,r) is not a convex set.

In the next section, we describe how to update V and W as we move along geodesics on
the Stiefel manifold S(n, r); in the two sections that follow, we use these updates to conduct
the minimization of the Lo and Ly losses respectively in the absence of regularization.
We introduce regularization for the batch case in section 2.4.4, and describe the on-line
algorithm in section 2.4.5.

2.4.1 Dynamics on Stiefel manifolds.

We begin with a description of the geodesics for the simpler case of S(n,n), followed by a
generalization to S(n,r) when n > r. Let O(n) denote the group of orthogonal matrices.
Suppose we are given a matrix V(¢) € O(n) that depends on a parameter ¢, where V()
describes a geodesic on the manifold O(n). Our goal in this subsection is to describe how
V(t) changes as we move along the geodesic. Since O(n) is not only a manifold but also
a Lie group (a special manifold whose elements form a group), there is an elegant way of
moving along geodesics which involves an exponential map.

MULTIVARIATE REGRESSION VIA STIEFEL CONSTRAINTS 27

We will give an informal but intuitive derivation of this map; for a formal treatment,
see [16, 23]. We begin by describing a useful property of the derivative of V(¢);

1= Vi)V,
d

0 = LvinTve),
0 = (LV)TVH+ VO (LV0)
0 = Z)" +Z(1),
with
Z(t) = V(t) (V). (26)

dt

The matrix Z(t) is skew symmetric, which we write as Z(t) € s(n,n), where s consists of
the set of all skew symmetric matrices of size n x n.

We next consider curves corresponding to 1-parameter subgroups of O(n); in other
words, curves satisfying V(0) = I and V(¢ + s) = V(¢)V(s) (in particular, V(t)~1 =
V(—t)) for all s,t. For our group O(n), we can obtain such a subgroup by fixing an
n-dimensional axis and considering all matrices describing rotations around that axis. In
this case, the parameters ¢, s can be thought of as rotation angles. Returning to (26) with
V(t) in this 1-parameter subgroup, we have

. V(t+ At) - V(i
2 = AHEOVW(Y ”)
T _ _ _
— lim V(i)' V(t+At) -1 — lim V(-t)V(t+ At) -1
At—0 At At—0 At
L VAD-VO) d)
a Alir—r}o At a dt‘ov(t) =Z(0),

which means Z(t) is constant. Multiplying (26) with V(¢) from the left yields an ordinary
differential equation of the form

V() = V()Z (27)

which has solution
V() = V(0)e'?, (28)

where €% denotes the matrix exponential, [34].5 We can see from (27) that the skew-
symmetric matrix Z specifies a tangent at the point V(0) on the Stiefel manifold S(n,n) =
O(n).?

We now generalize to the case where V does not have full rank, i.e. 'V € S(n,r) and
r < n. We can embed S(n,r) into O(n) by extending any V € S(n,r) with an n —r

$When verifying that (28) is indeed a solution for (27) note that the skew-symmetric matrix Z is normal,
ie. ZZ' =7 Z.

“Note, moreover, that (27) tells us that every tangent vector of the the curve V(t) can be obtained
by left multiplication of a constant tangent Z with V(¢). In terms of Lie group theory, the 1-parameter
subgroups of a Lie group correspond to ”left-invariant” vector fields, and they can be represented using
the exponential map (28).

28 CHAPTER 2

matrix V| € S(n,n — r) such that R" = V| @ V. Therefore V| spans the orthogonal
complement to the space spanned by the columns of V. Two orthogonal matrices A, B in
O(n) are considered to be the same from the viewpoint of S(n,r) if they relate as

B = [1,,,P]A (29)
for any matrix P € S(n,n — r). Therefore (27) can be written as

% VE, Vi@ = [V(0),V.(0)2 (30)
t=0

and
V() = [V(0), VL (0)]e?]l,,,0]. (31)

Note that there is no unique embedding of S(n,) to O(n), and our embedding is a specially
constructed one.

To conduct a gradient descent procedure, we need to find the tangent direction G
(for use in (28)) which is as close as possible to the free gradient G, since G does not in
general have the factorization (27). The constrained gradient G can be calculated directly
by projecting the free gradient onto the tangent space Ty S(n,r) of V; see [23]. Intuitively
speaking, we do this by removing the symmetric part of G 'V, leaving the skew symmetric
remainder. '© The constrained gradient is thus

G = G-VG'V. (32)

Finally, the skew symmetric matrix Z € R"*" is given by (26) as

(33)

. G'V —(GTvT
7 = AT .
GV, 0

We can now describe the nonlinear update operator mstiefel-

2.4.2 Do we need the 7sijerer Operation?

A reasonable question to ask is if the gradient descent along the Stiefel manifold is of
pure mathematical interest or does one really gain something? The brave could ignore
differential geometry and group theory and favor a naive optimization approach where

10 Any square matrix can be expressed as a unique sum of a symmetric and a skew-symmetric matrix.

Algorithm A2.1 TSTIEFEL (V, G’, t)

Given a free gradient G € R™", an orthogonal matrix V € S(n,r) and a scalar step parameter ~,
the update of V specified by G and ~ can be calculated as follows:
1) Calculate constrained gradient in (32).
2) Calculate orthogonal basis V| for the orthogonal complement of V.
3) Calculate the tangent coordinates Z in (33),
)

4) V() = [V, V_]e"Z [, 0.

MULTIVARIATE REGRESSION VIA STIEFEL CONSTRAINTS 29

one does a small gradient step and immediately project back to the feasible set of reduced
rank predictors. Thus one could calculate the gradient for the Lo loss

OLs

—lr, = -YX' +F,XX" 4
(9F F; + 7 (3)
and perform the standard gradient updates
- oL
Fipn=F; - 77871-?

where we use a fixed learning rate 7. Once the update is performed we can project back
to the set of reduced rank predictors via the singular value decomposition of F via

[V,S, W] =SVD(F;,1,r), and thus F;;; = VSW .

Here SVD(F, r) yields the r first left and right singular vectors V,W and a diagonal matrix
S with singular values in the diagonal entries.

To demonstrate the different optimization behavior we construct a simple regression
problem from R3 to R? with randomly generated input data and a randomly generated
predictor F'(2) € R33, subject to rank F2) = 2. We can try to solve the reduced
rank regression problem 1 by this naive procedure. We plot the path of the implicitly
defined input and feature matrices W,V during optimization, since W = [w, ws] and
V = [v1,v3] consist of 2 vectors in R each. One can see in the top row of figure 2.1
that back projection leads to non-continuous paths of [w, ws]| and [v1, v2] on the sphere,
where as applying msiiefel t0 the same problem results in smooth paths of the optimization
variable shown in the last row of figure 2.1. Although a standard gradient descent leads
to a decrease of the residual error, it is likely that back-projection compensates most of
this improvement since they work independently from each other. Indeed, back-projection
is completely independent on the state before the gradient step and on the objective
function of the problem. In figure 2.1 one can see where the path penetrates the sphere
that gradient descent and back-projection can even lead to oscillation on the feasible set.
On the other hand, the 7gtjefel Operation takes the original gradient and solves a motion
equation that ensures that we stay at all times on the feasible set. However, one could
argue that one might not be interested in the path of the feature matrices, since what
finally counts is the minimization of the objective function (1). For this reason let us
compare the minimization performance of both approaches. One can see in figure 2.2
that gradient descent on Stiefel manifold clearly outperforms the direct gradient descent
approach. Since we clearly demonstrated the necessity for the differential geometrical
update operator mgiefel We are ready to motivate our regression algorithm.

2.4.3 Multivariate regression with L, loss

We can apply a gradient descent approach to (7) which uses the Tstiefel Operation to
perform the descent. We first calculate the free gradients,

aLQ T

922~ _yXTW,sS,, 35
OLy T T, o2

9221, = —XYV,S; + XX TW,S2, 6
Fw 1o Si + (36)
ILy Ty T

T2 = 1, 0 W] XYV,

a5 % r©

+ 1., @ W/ XXTW,S;, (37)

30 CHAPTER 2

_V1

—V2

Path of W using standard gradient descent. Path of V using standard gradient descent.

_W1

—W2

Path of W using 7stiefel - Path of V using 7stiefel-

Figure 2.1: Paths of optimization variables using standard additive gradient descent and expo-
nential gradient update using mstietel. Top row: SVD back projection performs variables to jump
on the sphere surface. Jump positions are indicated by arrows. Bottom row: Paths done by
exponential gradient are smooth.

MULTIVARIATE REGRESSION VIA STIEFEL CONSTRAINTS 31

24

T T
—— Direct Gradient Descent
—— Gradient Descent on Manifold

[IY=FXI|

10 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400
Iteration

Figure 2.2: Minimization performance of direct gradient descent vs gradient descent on the Stiefel
manifold using 7sgiefel-

where ® denotes the Hadamard (element-wise) product. The free gradients are then
projected on the tangent space and used afterwards for a line search along geodesics using
the 7stiefel Operator. The multivariate regression algorithm for the Lo loss is summarized
in detail in A2.2. Note that alternative to the line search procedure, one can also use a
fixed learning rate 1 which would replace step 2 in algorithm A2.2.

2.4.4 Soft-Regularization

So far we only control the number of parameters via the rank constrained but not the mag-
nitude of the parameters. Since we have formulated our learning problem as an optimiza-
tion task it is quite easy to incorporate an additional regularizer €4 which penalizes the
squared norm ||F (|| (in a manner analogous to ridge regression), since ||Fy|[% = [|S][3.
The regularized version of (7) is

0 = argmin |[Y — VSW X% + \||S|2. (38)
F(=VSWT

subject to constraints (4)-(6). The only change in algorithm A2.2 is to replace the gradient

G2 lo by

dla, Ly
%6 = %94')\5. (39)

2.4.5 On-line variant: S-MRS

In this section, we describe the sequential implementation of MRS, denoted by S-MRS.
The main difference, compared with the batch method, is the addition to the loss of
a regularizing functional ' Q,, which controls the trade-off between fit to the newly

1This should not be confused with the regularizer Qg introduced in the previous section, which controls
||F(||? for a solution obtained with a particular batch of data.

32 CHAPTER 2

Algorithm A2.2 MRS FOR Ly LOSS FUNCTION

Initialization

Vo=1ag, So=1,, Wo=1,,

0o = (V0,50 Wo) F(yy=WoS5 Vo i=0
Repeat until convergence:

1) Calculate free gradients, equations (35)-(37)
2) 1y, 5, tiy = argminly(V(ty), S(t), W (tw))

tv,ts,tw
with W(tw) = Tsticfer (Wi, %‘Oth)v
V(tv) = Tstiefet(Vi, 95
and S(t) = S; +ts %% |o,
) Vis1 =V(ty), Win =W(ty), Sit1 = S(ty)
) Foyppr = VierSia Wi
) Oix1 = (Vig1, Sit1, Wit1)
6) i=i+l

0:,tv),

= W

Ut

After convergence : F(.) =F(,),

observed data block Zjp = [Xj, Y] (as measured by L), and distance to the predictor

F(f_l) obtained from previous data Z; with j < k (see (9) in section 2.2.1 for more detail).
Thus the regularization functional takes the form

(r) 7(r) (r)

2
Ty k=D gDy k=1 ") _ T _ kD) gDy -1 T
QD<V<r>S<r>W<r> Vi 8 r) = VHVmS(r)Wm Vi S Wi

Since €, (and thus £) is differentiable, the free gradients 3—6]91,, g—vﬁv g, and %‘gi can be

calculated analytically.

The regularization parameter v controls convergence behavior. For example, we can
increase v for every new block k to progressively decrease the influence of new observations.
On the other hand, a fixed « can be used to implement adaptive behavior if the distribution
generating the observations changes over time. Given these quantities, and starting with
F() =1 at k = 0, we can adapt algorithm A2.2 to solve (10) for each k£ > 0 and associated
observation sequence Xy, Y. The on-line algorithm given is described in A2.3.

All techniques introduced so far use a gradient descent type procedure on the quantities
W,V and S. Thus, in principle we are using a path-following optimization algorithm
starting at a particular point and are likely to end at some local minima. To this reason,
in the next section we reconsider the inference problem in the Bayesian framework which
provides us with an optimal distribution over the space of predictors. We will exploit this
theoretical optimal distribution to generate predictors via sampling using Markov Chain
Monte Carlo (MCMC) sampling schemes. Later in chapter 3 we will reconsider a similar
approach to hard optimization problems in a more general perspective.

MULTIVARIATE REGRESSION VIA STIEFEL CONSTRAINTS 33

Algorithm A2.3 SEQUENTIAL MULTIVARIATE REGRESSION WITH STIEFEL CON-

STRAINTS
T
Given data Xy, Y, a learning rate v and a reference mapping F(f)_l) = VE]:)_I)S((f)_l)ng)_l)
Initialization

VooV sims? wom iy

90 = (VOv So,W()) FO = WOSOVO 1=20
Repeat until convergence:
1) Calculate free gradients 9= |, , 2% |o, and 2%|o,.

2) t3,t5, iy = argminL(Zy, V(tv) S(ts) W (tw), F(kfl))

tv,ts,tw)
with W(tW) = Wstiefel(wia % 9i7tW)7
V(tv) = Tstieret (Vi 9o, tv),

and S(t) = S; +ts9%

0,

) Vip =V(ty), Wi =W(ty), St =S(t5)
) Fi+1 = Vi+ISi+1W’L+1

) Oix1 = (Vig1, Sit1, Wig1)

6) i=it1

T W

After convergence : F(,) =F;, k=k+1

2.5 The probabilistic viewpoint — Bayesian Inference with
rank constraint

Instead of solving the non-convex problem (1) via a gradient-descent-based procedure, we
can try to avoid it entirely via probabilistic methods: If we were able to define a distribution
P(F () over all possible predictors such that good predictors have high probability, we
could generate samples from this distribution. As a consequence, sampling from this
distribution is likely to generate good predictors and requires us to consider two issues:

1. What are useful distributions with high probability measure on good predictors?
2. How can we sample predictors F ;) from such a distribution?

Let us start our discussion by addressing the first point.

2.5.1 The Anatomy of the Posterior Distribution

We assume that predictors F(;), input data X and output data ¥ have a joint distribution
that depends on a set of additional hyperparameters 7. We are interested on the posterior
probability of a predictor F(;), given X, Y and 7. Using the Bayes formalism, we can create
a posterior distribution over the set of predictors, given a cost function or a likelihood
function and any prior knowledge about the solution. Let us denote this posterior by
P(F(;)| X, Y, 7) describing the dependence of F,) on the data X, Y and hyperparameters
7. If we assume that F,), 7 and X are independent and X has a flat prior, this posterior

34 CHAPTER 2

factorizes as follows
P(F(T) |X7 Ya 7-) X P(Y‘F(r)a Xv T)P(F(T))P(T)7 (40)

where P(Y'|F(,y, X, 7) denotes the user-provided likelihood function with hyperparameter
7 and where P(F(T)) denotes a prior probability over the set

Hiy = {F() € R — R |rank F(,) =7} (41)

Thus, once we have specified our likelihood model and our prior assumptions in terms of
parametric distribution functions, we are ready to generate samples from the posterior.
The appealing feature of the probabilistic approach is versatility. We can use any likelihood
function, i.e. any cost function we want. A common example is the Gaussian likelihood
which corresponds to the Ly error:

P(Y|F(y, X,7) o e 22V "Fen X1

We can use even non-differentiable cost functions by constructing the corresponding like-
lihood function. Consider the case that our data is corrupted by noise from a heavy tailed
distribution. In such a situation the Laplacian likelihood,

P(Y|F(r)7X77_) X e_%HY_F(T‘)XHa

can be used. This corresponds to using the non-differentiable L; loss function. After
having defined our likelihood function, we have to define priors appropriate for our model.
Let us start with the prior P(F). Since F, factorizes as

T
F(T) - V(I‘) SW(I‘)’

we have to define a prior P(V(r), S, W(r)). If we assume that V(r)SW(Tr) are independent,
the prior is of the form
P(F) = P(V () P(S)P(Wy)).

Using this prior we obtain the final form of our a posteriori function:
P(Fy|X,Y,7) o< P(Y|F (), X,7)P(V () P(S)P(W) P(7). (42)

We give V() and W,y uniform distributions over the Stiefel manifold, since in general
no V), W,y can be preferred over another. For the entries of the diagonal matrix S we
would like to use a prior which is invariant under linear transformation, i.e. P(S) = P(cS),
since we do not know in advance the scale of the entries of S. However, we know a priori
that only positive values are allowed. Both of these requirements are met by the so-called
Jeffries prior (see e.g. [57], chapter 23), p(S;) = 1/Silg,~0 (1 is the indicator function).
We now have all the components required to specify the posterior (up to normalization).
For both possible likelihood functions, the model parameter 7 can be interpreted as some
measure of the amount of noise. Since we do not have any knowledge about the magnitude
of the noise as well, we use again the scale invariant Jeffries prior for 7.

Let us now come to the second point: How can we sample from the distribution in
(40)7

MULTIVARIATE REGRESSION VIA STIEFEL CONSTRAINTS 35

2.5.2 Sampling from the Posterior using MCMC

Let us briefly discuss how sampling using Markov Chain Monte Carlo (MCMC) works in
general and afterwards proceed with the description of the details for our specific case.
Consider an arbitrary distribution function P(Z) such that it is not possible to directly
generate samples from it. The most naive way to generate samples from P(Z) is the
acceptance-rejection rule:!?

1. Draw a random sample Z according to a uniform distribution.

2. If P(Z) is larger than a random threshold drawn uniformly from the unit interval,
accept this as sample from P(Z), otherwise reject.

Although straight forward in its implementation, the acceptance-rejection rule is subop-
timal. To see this consider P(Z) to have a compact support. Note that the acceptance-
rejection rule generates samples Z1, Zs, Z3, ... independent from previous success or fail-
ure, i.e. this sampling process does not have a memory. Therefore, since all points outside
the support of P(Z) have probability zero, the acceptance-rejection rule is likely to gen-
erate repeatedly samples Z that will be rejected. This effect becomes more prnonounced
for high-dimensional problems, since the probability that a sample will fall outside of the
support of P(Z) will increase. The idea of MCMC methods is to replace this independent
sampling process by one which has a memory. To this end, one uses a Markov process
which is determined by the transition equation

Z(t-‘rl) ~ T(z(t-‘rl) lz(t))’

and an initial distribution function Tp(Z).'® Thus, if a state is in a high probability region,
it is likely that the next state will have high probability as well. The question is, how
to design the transition function T(Z+1|Z(®)) such that the equilibrium distribution —
ideally our distribution P(Z) — is reached as quickly as possible. Furthermore, to be of
any benefit, the construction of the next state Z(t+1) of the Markov process given the
current state Z®) must be efficient. To this end, besides leading to quick convergence, the
transition rule must be easy to evaluate as well. The Metropolis-Hastings (MH) algorithm
prescribes exactly such a transition rule. It requires to specify an arbitrary proposal
distribution function ¢(Z®*1|Z®) which generates candidates Z(!*1) given the current
state Z(). Ideally, the proposal distribution ¢ would generate candidates that are in high-
density regions of P(Z). The choice of the proposal distribution function is critical for the
resulting convergence speed and we will discuss later proposal functions for our problem
in more detail. Using candidates generated by the proposal function, the MH rule leads
to a Markov process which reaches any target distribution independent P(Z) of a starting
distribution Ty(Zy). We give a description of the MH algorithm in A2.4. For a rigorous
review and analysis see [67].

Now, note that so far we have discussed sampling from one random variable Z. In
the case of rank-reduced regression, we have multiple random variables § = {V, S, W 7}
and not just a single one. In principle, we could stack all variables to one random vector
Z. 'This would require us to define a single proposal function q(Z |Z) to generate new
candidates for Z. However, in our setting, it is easier to define proposal functions for all

2For simplicity we discuss the case that one draws Z from a uniform distribution. This is the so-called
proposal distribution, and ideally one chooses a proposal distribution being as close to P as possible.

13Since in general, one does not have a prior on the distribution of Z in space one assumes the initial
distribution To(Z) to be uniform.

36 CHAPTER 2

Algorithm A2.4 METROPOLIS-HASTINGS METHOD FOR DRAWING SAMPLES FROM P(Z)

1) Sample u ~ U[0, 1], where U[0, 1] uniform on [0, 1]

2) Sample D ~ q(Z(k') |Z(*)), where q(Z(k) |Z(F)) is the proposal dependent on the current state
AL

k) Z(k)Y .— i QZ™M)q(z™|2™M)
3) Set, oz(Z(>,Z()) = 1mm 17 Q(Z(k>)Z(2<k)|Z(k))

4) fu < a(Z2®,2F)) zE+D) .= Z(F) otherwise Z*+1) .= Z(*)

variables independently. 4 A sampling strategy which allows for the construction of a
Markov chain for each model variable independently is Gibbs sampling. The advantage of
a Gibbs sampler is that it alters only a single variable per state transition. Thus, it can
be understood as a coordinate-wise sampling strategy. However, the only requirement of
Gibbs sampling is that each variable is drawn from its conditional distribution. Let us
briefly describe Gibbs sampling.

1. Select a single element ok) ¢ gk)

i
2. Update this single element with a new sample drawn from the conditional distribu-
tion 7 (ng) ‘H(k) \ {95“}) and leave the remaining components unchanged.

3. Set k=k+landi=i+1. Ifi>[0%)] theni=1.

Unfortunately, in our case it is also difficult to sample from the conditional distribution
of each variable. However, we can use the Metropolis-Hastings algorithm for this task.
Thus, if we use the MH algorithm inside the Gibbs sampling for the conditional distri-

bution 7 (Hgk) ‘9("“') \ {91@)}), we obtain the so-called Metropolized Gibbs sampler. In this

work, we will apply this sampler since our model consists of four independent variables.
Before we finally apply the Metropolized Gibbs sampler, let us give an example how the
variables 8 = {V, S, W7} of our model would evolve while sampling.

Example E2.1 Variables while performing a cycle of Metropolis Gibbs sam-
pling.: Let 0 = {V° SO WO 70% be the start state. We assume that we are given three
proposal distributions qv, qs,qw for the MH algorithm.

Repeat
i M Vit given 0 = {Vi S" Wi 11},
Wi Wit given 0 = {Vi+l S Wi i1,
gi MH S given 0 = {Vitl §i Witl i}
7 M given 6 = {vitl gitl Wwitl i1

1=1+1

M1n fact, for MCMC methods, it is of advantage to exploit the decomposition into quantities living in
lower-dimensional spaces since the lower dimensional the state variables are the faster convergence will
happen. [67].

MULTIVARIATE REGRESSION VIA STIEFEL CONSTRAINTS 37

Once we define proposal distributions for each variable of our model we can utilize
Metropolized Gibbs sampling to generate predictors according to the posterior. The most
difficult aspect is how to choose a proposal distribution determines the sampling process for
V() and W,y for the Metropolis steps. Let us investigate some possible approaches. For
the case of the orthogonal group, a straightforward method would be to use elementary
rotation matrices parameterized by Euler angles around some rotation axes e;. Since
any element of the orthogonal group can be written as a matrix product of elementary
rotations, sampling over Euler angles is indeed a valid approach. There is a problem with
this direct approach, however: for rank deficient matrices on the Stiefel manifold, we would
need to sample both over the rotation angles and over rotation axis. To see this, consider
sampling from the Stiefel manifold S(3,2). In this case, we would have to first set two
rotation axes in a three-dimensional space and then draw two Euler angles to determine
an element from S(3,2). Obviously, sampling the Euler angles alone is not sufficient since
one has to specify the corresponding axis first. For this reason, Euler angles can only be
used in obtaining elements from the orthogonal group O(n) = S(n,n) since all rotation
axis are defined in advance. An additional difficulty arises since the matrix product is
non-commutative, which implies that using a specific rotation angle parametrization does
not encode the elements of the Stiefel manifold in a unique way. This would increase the
variance of the feature matrix samples W,V when they are encoded in this manner.

Another way to generate proposals on the Stiefel manifold would be to directly apply
an orthogonalization procedure to a set of r random points in R"; see [29, 89]. This
procedure results in proposals taken from a uniform distribution over the Stiefel manifold.
However, it is well known (e.g. [67]) that the Markov chain resulting from an MH step
with this proposal, which takes no account of the previous sample, can take a long time to
reach its equilibrium distribution. A more useful proposal for MH takes as a starting point
the value of the current state and performs some perturbation to generate the candidate
for the next state. A conceptually pleasing distribution for this perturbation could take
an equivalent form to the normal distribution centered at the present sample point, but
on the Stiefel manifold. The counterpart of a normal distribution on the Stiefel manifold
is the Langevin (or von Mises-Fisher) distribution, which for a random matrix X € S(n,r)
takes the form

P(X|F,0?) = %eﬁ““ﬂm,

where Z = [, f(X)u(X) according to the probability measure p : S(n,7) — R, and F the
point on R’, equivalent to the mean; see [15].'5 Sampling from the Langevin distribution
cannot be carried out directly and thus requires an additional sampling scheme — this is
inefficient and should be avoided.

The proposal distribution we use in practice is in fact similar to the Langevin distri-
bution, but can be constructed using the geodesic flow operator introduced in algorithm
A2.1. The proposal first requires sampling from a normal distribution A(0;o?1) on the
tangent space TrS(n,r) of a point F' € S(n,r). For the case of the orthogonal group, our
true proposal distribution has the form

P(X|F,0?) Oce—ﬁHlOgm(FTX)H%’ (43)
where we have inverted the exponential mapping to map a point X from the Stiefel
manifold back to the tangent space of a particular point F. To see this, consider two
points F, X on the orthogonal group. We know that one can be obtained by the other by

5For the Stiefel manifold, one can compute Z analytically.

38 CHAPTER 2

Algorithm A2.5 SAMPLING USING UNIFORM DISTRIBUTION ON THE STIEFEL MANIFOLD
S(n,r)

1) Construct a matrix N € R"*", with each element sampled from a zero mean unit variance
Gaussian N (0, 1).

2) Apply a thin QR Decomposition of N to construct @ and R.
3) Let D be a diagonal matrix with D;; = sign(R;;)
4) Construct Q=QD.

the geodesic flow operator as
X = Fe?,

where Z encodes the direction. If we multiply by F' and invert the matrix exponential
operation, we obtain the skew symmetric matrix Z, which is always possilbe in the vicinity
of F'. This can be interpreted as coordinates of X in the (linear) tangent space of F. If
the Frobenius norm of Z is large, X will be further apart from F. This distance is the
argument of the Gaussian distribution in (43).

Using the equation for the geodesic trajectory (28) we can easily generate variates
X € S(n,r) from this distribution via

X = [F, Fle?[1,,,0]",

where Z € s(n) is a random skew symmetric matrix of size n X n with components drawn
from N(0; 0%). For the case of S(2,1) (the unit circle in a plane) our proposal distribution
is illustrated in figure 2.3, and details of the proposed sampling scheme are described in
algorithm A2.6.

We now briefly describe the proposal on the scaling matrix S, with reference to a
particular entry S;. Since we require that any .S; remains positive, we make the proposal

Sr = Siel, (44)

where A ~ N(0,n1) and 7 € R takes on the role of an exploration rate. This corresponds
to a linear proposal on the logarithm of the 5;, i.e.

log(S]) = log(S;) + .

It follows that the proposal for \5; is

* 1 *
005150 o exp (= Hog(57) —~ lon(S)))

We use an identical method to propose new samples for 7.

We are now all set and can describe the probabilistic version of multivariate regression
using sampling. The resulting algorithm is given in A2.7. To determine if our sampling-
based algorithm has converged, we propose to perform Nj steps to overcome the so-
called burn-in phase. Thus the user has to specify the parameter N; in advance, and
the algorithm will return Ns predictors after first sampling N times. The parameter Ny
can be understood as the time the Markov process needs to reach equilibrium. For more
advanced convergence controls see [57, 67].

MULTIVARIATE REGRESSION VIA STIEFEL CONSTRAINTS 39

Algorithm A2.6 SAMPLING USING A GAUSSIAN ON THE TANGENT SPACE OF AN ELE-
MENT X OF THE STIEFEL MANIFOLD S(n,r)

1) Construct a matrix § € R™ ", with each element sampled from a zero mean Gaussian
N(0,0?%).
2) Take § = 1(0—07)

5T
3) Construct Q = [X, X]e?[1,,.,,0]

0?=0.5 0’0.1

a) b)

Figure 2.3: Tllustration of proposal distribution for the case of S(2,1). The circle in a) and b)
has radius 0.95. The probability P(Z|X,0?) is calculated by evaluating a standard multivariate
Gaussian distribution on the tangent space at X.

2.6 Experiments

In this section we evaluate the performance of the introduced algorithms in various sce-
narios. We start with a comparison of the introduced deterministic algorithm 2.4 against
Partial Least Squares which currently is the standard method for reduced rank regression.

2.6.1 Comparing PLS and MRS-L,

We compare the introduced deterministic algorithm MRS with PLS in a systematic way
and test if their performance differs significantly. Our aim is to demonstrate that, since
PLS regularizes via early stopping, MRS will mostly outperform PLS. To create a sys-
tematic test, we generate data points X; € R?? by sampling from a zero mean Gaussian
distribution with covariance matrix Cy(k) € R?°*20 which dependents on the scalar .
To this end, we first generate a random orthogonal basis in R?0 for n = 20,7 = 20 and
scale the i-th vector by s; = e(_%ﬁ). The desired random sample X € R20%N can now be
generated by sampling from a multivariate Gaussian and projecting onto this basis. In this
way, we generate a rich variety on possible linear regression problem with different data
collinearity conditions under the assumption that the input data is Gaussian distributed
and the noise is Gaussian.

For each rank constraint, and each x we generate a regression problem with y; =
FOX; + ¢, where F € R?°*20 i5 a random linear transformation and perturb the linear
transformation §; = FX; by a random vector € € R?? which is sampled from a Gaussian
distribution A'(0;02). For k we choose 1,...,14 since for £ > 15 the spectra are numeri-
cally identical. Thus for each of the 14 regression scenarios we generate 20 different rank

40 CHAPTER 2

Algorithm A2.7 PROBABILISTIC MRS

Probabilistic MRS to obtain the MAP Estimate given a posterior distribution
PF|Y,X,7) < P(Y|F(y, X, 7)7(T)

and uniform prior over My.
Initialization
Vo=1g, So=1,, Wo=1,,
0o = (Vo,50, Wo) Fy, = VoSoWg
For k=1...N7i+ Ny
1) Apply algorithm A2.4 to W and with proposal given by algorithm A2.6.
2) Apply algorithm A2.4 to V and with proposal given by algorithm A2.6.
3) Apply algorithm A2.4 to S and with proposal distribution (44).
4) Apply algorithm A2.4 to 7 and with proposal distribution (44).

Provided that N is large, choose the best predictor among the last No to be the estimated MAP
model:

0; = argmax P(F,,|X,Y, 7).
N1 <i<Ns

constrained prediction problems. For all of the 14 x 20 cases we repeat the experiment
10 times with new yf = F%X; +¢ and k = 1...10. For each experiment we use 400
training points and report the squared reconstructlon error on 100 noise free test points
and compare the PLS predictor F Prg against the MRS predictor F v rs- To determine
the significance of the result we perform the Wilcoxon signed rank test 1% on the 10 mean
squared test errors to check if the performance differences are significant (with 5% sig-
nificance level). We report results on two noise levels 02 = 0.1 and ¢? = 1 in figure
2.4.

One can see in figure 2.4 that for most rank constraints and for almost any collinearity
condition MRS outperforms PLS. A regime worth noting is when the rank constraint equals
the number of input dimension which actually means that there is no rank constraint. In
this case, it is known that PLS converges to the standard least squares predictor being
optimal for low noise. In our case, we observe that for higher noise levels and if there
is no rank constraint PLS overfits (as one would expect from the least squares solution).
If the rank constraint is active it leads to possibly underfitting due to the early stopping
regularization

Let us pick two rows of the plots in 2.4 for the case that 02 = 1 and analyze in which
sense MRS outperforms PLS. In figure 2.5-a we report the relative difference for the rank
constraint set to 12. One can see that a significant improvement was obtained consistently
for arbitrary levels of collinearity. On the other hand in figure 2.5-b, we show how MRS
leads to a predictor with mostly lower performance than PLS if there is no rank constraint
(rank = 20), since in this case PLS equals least squares estimation but MRS tries to solve
a harder non-convex optimization problem to reach the least squares solution.

16Using the matlab signrank implementation.

41

MULTIVARIATE REGRESSION VIA STIEFEL CONSTRAINTS

=0.1

<« NNNNNNRRRRRNRNENR

<<NNNNNNNNNNNENNDNR
<NNNNNRENNNNNNNDNR
<NNNNNNNNNNNNNDNR

[/INNNNNENNENNNDDD

<INNNNRNENNNNNNNDNR
< <{NINNNNRNENNNNNNNDNR
1< NNNNRENNNEENINN
<1 NINANNNRNNNDND

N

</ /INNNNRENNNRNNENDND
<INl NINNNNNNANN NDR
i
(I

251

I I I
o Lo o Lo
N — —

suey

15

10

< NNNNNNRRRNRNNNEND |

<« /IININRNNNDRNNDNR
N
< /HNNNNRNNNRNNNDNR

< /NNNNNNNREENNNRDNR

< HIENINRRNNRNNNDNR
</ INNNNNNNNNDNN NOR
<d I Nnnnnnmn
Nl |

<<INNNNNEENNDENDDNR

</NNNNNNNNNNNND AR
1 IINNNNRNNNDNR
REE<E< <A NN
< <« Ina

251

I I I
o L0 o Lo
N i —

quey

15

10

Figure 2.4: Differences between generalization performance of MRS and PLS for various collinear-

Triangles indicate that PLS outperforms MRS. Rectangles

indicate the opposite. Hollow symbols indicate that no significant difference was observed.

ity condition and rank constraint.

42 CHAPTER 2

1r 1
0.9r 0.9
0.8r 0.8f
% 0.7 % 0.7
£ £
w w
w 0.6 w 0.6
0.5r 0.5¢
0.4t —— MR812 0.4+ —i— MRS20
ol —_ PLS12 0s —_ PLS20
’ 2 4 6 8 10 12 14 ' 2 4 6 8 10 12 14
K K
a) b)

Figure 2.5: a) MRS can outperform PLS significantly if there is a rank constraint. b) Since MRS
solves a hard non-convex optimization problem, it is not guaranteed to reach the Least Squares
Solution.

FE denotes the mean squared error, where F,,,, denotes the maximum error over all
experiments.

2.6.2 Face denoising: a large-scale problem

In this experiment we apply the sequential MRS (S-MRS) to an image denoising, where we
draw our data from the face database in [73]. This database contains a training set of 2429
faces and 4548 non-faces, where every face is a 19 x 19 gray-scale image. We perturbed
the gray values of each pixel with univariate random noise of magnitude 0.01. The noisy
images served as input, and our goal was to reconstruct the original unperturbed image.

To perform denoising, we first applied kernel PCA (see A1.3) to extract 500 nonlinear
features from 2400 randomly sampled images, using a Gaussian kernel of width 5. Each
input to S-MRS was then given by projecting an image onto these features, yielding a 500
dimensional input space R?. We set the rank r of the mapping to 50, and trained the
algorithm for 50 epochs. In each epoch we train S-MRS with m = 50 randomly chosen
images (projected onto the 500 dimensional kernel PCA basis). The training outputs were
simply the corresponding unperturbed face images of size 19 x 19.

Denoising performance is shown in Figure 2.6-a. Since our output space is linear and
corresponds to 19 x 19 images, it is possible to visualize the output basis V by perturbing
the mean image in the direction parameterized by each of the column vectors in 'V (see
Figure 2.6-b). We see in 2.6-a that S-MRS is able to generate a de-noised version of
the face despite the strongly corrupted images. Note that the de-noised image sometimes
looks like a different person. This effect, is due to kPCA and was explored in [49]. Since
MRS and S-MRS optimize the feature matrices W,V explicitly during training, we can
visualize the directions in V which live in the space of R'¥*! images. Since V should
span the relevant subspace of the outputs which in our case are faces, one would expect
that V should carry some information about faces. We show in figure 2.6-b that this is
indeed the case and that the columns of V can be directly used. This subspace can be
explored, for example, by adding a perturbation to the mean of all faces using the columns
of V.

MULTIVARIATE REGRESSION VIA STIEFEL CONSTRAINTS 43

Figure 2.6: a) Denoising performance on 5 face images of the testing set. The original image is on
the first row, the noisy image on the second row, and the predicted noise-free image on the third
row. b) Hlustration of three output feature vectors v; in 'V, one in each row. The significance of
these features is shown by perturbing a particular image in the direction parameterized by each
of the vectors. The middle column corresponds to the mean image over all faces in the training
set, while to the left and right we add a v; for a small a. The columns correspond respectively to
a € [-0.2,-0.1,0,0.1,0.2].

2.6.3 Probabilistic Inference using the Laplacian Likelihood

In this section, we test our probabilistic rank-constrained regression scheme with a Lapla-
cian likelihood function(corresponding to a non-differentiable L; loss function). Our aim
is to demonstrate that although the loss function is not differentiable and gradient de-
scent procedures are not applicable, sampling-based schemes can be applied successfully.
To this end, we create a synthetic regression problem with two-dimensional inputs and
two-dimensional outputs and look for the best predictor with rank one. We create random
input data as in the synthetic experiment in 2.6.1 above where we scale the second input
dimension by 0.2 to obtain collinear inputs. We use a random transformation matrix to
obtain the outputs, which we perturb by Gaussian noise with variance 0.1. The training
and the test set contain 500 points each. From the training set we perturb two randomly
selected vectors yq,yp by 9o = Yo + 1t - v, and gy, = y, — t - v where v is the minor prin-
cipal component of the outputs. Thus we introduce outliers in a controlled manner. For
the burn-in phase of the sampling-based algorithm using the Laplacian likelihood we set
N1, Ny equal to 500. We consider the best predictor of the last 500 steps.

We show in figure 2.7-a) the output data with both outliers y,, y; for two states t = 0,
t = 1 of the experiment. In figure 2.7-b) one can see that standard Ls loss function and
PLS is going to fit more and more the two outliers whereas the MAP estimate using the
Laplacian likelihood function remains almost unperturbed. Thus, clearly using sampling
we can use the likelihood function which is right for the task at hand and do not need to
constrain ourselves on differentiable loss functions.

44 CHAPTER 2

£
w
w 0.6
0.5¢
t=1
0.4
A
Y .
0.30 0.2 0.4 0.6 0.8 1
L t=0 t
a) b)

Figure 2.7: Sensitivity of the MAP Estimator using the Laplacian likelihood function in contrast
to the PLS and Ly minimization.(We used the maximum error for normalization.)

2.7 Conclusion

We have introduced a new framework, MRS, for regression between multi-dimensional
spaces. Our method tries to find the optimal input and output subspace for the given task
at hand using a gradient descent procedure on the manifold of orthogonal matrices. Note
that, for example in KDE the regression problem is as high-dimensional as many training
examples one have (see section 1.3). Thus, in this situations the restriction on subspaces
is a reasonable regularization mechanism. In contrast to other existing heuristics like PLS
or PCR which also choose subspaces for regression, our introduced method is derived from
a pure optimization viewpoint, trying to minimize single objective function. This allows
us to extend classical reduced rank regression with additional regularizers and adapt it
to arbitrary differentiable loss functions. A major disadvantage of the gradient-based
technique is that it depends on a starting point since a rank constraint leads to a non-
convex optimization problem. However, solutions from classical techniques can be used
as a reasonable starting point for optimization. For the case of non differentiable loss
functions we proposed the maximum a-posteriori solution which can be found by MCMC
sampling. We have investigated MCMC sampling for our model class and discussed how
one can sample from Stiefel manifolds. Using general sampling strategies allows us to
pick any suitable loss function for the task at hand, not necessarily constrained to be
differentiable.

Chapter 3

Strategies For Continuous and
Discrete Pre-Image Problems

In the middle of difficulty lies opportunity.
— Albert Einstein —

In this chapter we are concerned with the problem of reconstructing patterns from their
coordinate representation in feature space. We will introduce algorithms which attempt to
reconstruct possibly structured patterns from a feature space embedding.

3.1 Introduction

In this chapter we are concerned with the pre-image problem. Besides being one of the
cornerstones in the generalized inference setting of KDE, calculating pre-images is of wide
interest in kernel methods. Applications of pre-image techniques cover for example reduced
set methods in [12], denoising in [61] and hyper-resolution using kernels in [49]. Let us
give a definition of the pre-image problem first:

Problem P3.1 The Pre-Image Problem:
Given a point W in a feature space F,, find a pattern z* in the set Z such that the feature
map ¢, maps z* to ¥, i.e.:

‘I’Zﬁbz(z*). (1)

A special case of the problem P3.1 is the case when W itself is given by a linear expansion
of patterns:

Problem P3.2 The Pre-Image Problem for Expansions:

Given a point W in a feature space F, expressed by a linear combination of patterns
{.731, R ,a:N} C ZN, 1.e.:
N
v = Z ai¢z($i)7
i=1

find a pattern z* in space Z such that

N
v = Zaz¢z(xz) = ¢Z(Z*)-
i=1

46 CHAPTER 3

Obviously solving pre-image problems corresponds to an inverse problem, since ideally
2* = ¢ (W) and thus solving a pre-image problem requires to invert the feature map.
Unfortunately, in the most common cases it turns out that the problem of inverting ¢
belongs to the class of ill-posed problems. Let us first review the properties of well and
ill-posed problems.

Definition D3.1 Well-Posedness of Inversion Problems, see [90]: The problem

Alx) = o, (2)

where A : D(A) C X — Y is an operator, yo € Y is the target, and v € D(A) is an
solution to the operator equation (2), is said to be well posed in the Hadamard sense, if
it satisfies the following three conditions:

1. Ezistence. For every target y €), there exists a solution x € D(A) C X with
y = A(x).

2. Uniqueness. For any pair of inputs x,z € D(A) C X, it follows that A(z) = A(z) if
and only if x = z.

3. Continuity (stability). The mapping is continuous, that is, for any € > 0 there
exists § such that the condition ||x — z||x < § = ||A(x) — A(2)|ly < €, with || - ||y
representing an appropriate distance metric.

The problem is said to be ill posed, if any of these three conditions are not satisfied. If
A is a linear mapping we speak about linear ill-posed problems and of non-linear ill-posed
problems otherwise.

Roughly speaking Hadamard defined an inverse problem as in equation (2) as ill posed
if the solution is not unique, does not exist or if it is not a continuous function of the data
—i.e. if a small perturbation of the data can cause an arbitrarily large perturbation of the
solution.

We could use definition D3.1 to categorize kernels k£ and their induced feature maps ¢y
according to their inversion properties, however it turns out that the most critical property
is existence and thus we will focus our discussion on the existence property.

3.1.1 The pre-image problem: An ill-posed problem.

Let us consider first the case that ¥ is given by an expansion. One can show that if
the kernel can be written as k(z,2') = fi(z"2') with an invertible function f; (e.g.,
polynomial kernels with k(z,2’) = (z72')¢ with odd d), then one can compute the pre-
image analytically as

m N
2= i D ajk(zge) | e,
i=1 =1

where {ej, ..., e,} is any orthonormal basis of input space.

Unfortunately this is rather the exception than the usual case. One reason is that sev-
eral patterns in input space can have the same feature space representation. In particular
kernels k : X x X — R which are invariant under some transformations Z(t) : X xR — X,
ie: k(xi,xj) = k(I(t,x;),1(t,x;)), induce non injective feature maps and thus do not ful-
fill the uniqueness criteria. For a discussion of invariant kernels, see e.g. [78, chapter 11].

STRATEGIES FOR CONTINUOUS AND DISCRETE PRE-IMAGE PROBLEMS 47

Another reason is that the span of the data points does not need to coincide with the
image of the feature map ¢5. Even worse, for the most widely used radial basis function
kernel any non-trivial linear combination of mapped points will leave the image of ¢ and
this guarantees that there does not exist any pre-image. Therefore kernels which are not
invertible and/or have built-in invariance properties imply ill-posed pre-image problems
because they do not fulfill the existence and the uniqueness criteria of D3.1.

An additional difficulty arises in the pre-image setting of KDE where W is an estimated
point represented by estimated kPCA coordinates (see chapter 1). In KDE it can happen
that the estimated representation T'r¢(x*) is not part of the image of the output feature
map ¢;, where Tr is the learned map among input and output feature spaces. This is
likely since there is no constraint in the KDE regression problem formulation that forces
predictions ¥ = T'r¢(z*) to be reconstructable. !

Summarizing we see that inverting the feature map is likely to be an ill-posed problem.
Thus to overcome the ill-posed formulation [12] suggested to relax the original pre-image
problem.

3.1.2 Relaxation of the pre-image problem

A straightforward relaxation of the inversion problem is to drop the requirement on the
pattern z* to be the exact pre-image but to be as close as possible to an ideal pre-image.
Thus we consider the following approximative pre-image problem:

Problem P3.3 The Approximate Pre-Image Problem:
Given a point ¥ in F,, find a corresponding pattern z* € Z such that

2 = argmin || (2) — ¥|3. (3)
rEZ

We will denote henceforth the objective function by £ : Z — R.

Note that the problem P3.3 is an optimization problem and not an inversion problem,
and that in the case where the inverse map ¢! exists, ¢~ (¥) equals the optimal solution
z* of (3) in P3.3. Otherwise the found z* is the solution with minimal Euclidean defect
|¢.(2*) — ®||3. Furthermore note that the new problem is formulated

e in a high and possibly infinite dimensional feature space (illustrated in figure 3.1),
e and the optimization is over an arbitrary set in the input space.

It is not straightforward to see that a tractable algorithm solving problem P3.3 should
exist. Fortunately for some interesting sets Z we can formulate algorithms which can
be used to solve P3.3 and this is the subject of this chapter. These algorithms are not
applicable in general cases for Z, but are always going to be tailored specifically to Z by
using special properties inherent to the set Z.

We begin in section 3.2 with the case that Z is a subset of a real vector space R
We will review existing pre-image techniques which are only applicable in this case and
propose a new pre-image algorithm based on learning. Furthermore we will focus on
feature mappings which are induced by a Gaussian kernel, since it is the most widely
used kernel in practice. In section 3.3 we will compare the introduced algorithms on the
problem of visualizing eigenvectors obtained by kPCA.

!One can consider a modification of the regression formulation used in KDE such that predictions lie
on an a-priori defined manifold in the feature space. This would lead to a regression task with structured
outputs and is subject of current research.

48 CHAPTER 3

Figure 3.1: The approximate pre-image problem: Searching for a pre-image z* of a point ¥ given
in feature space F, corresponds to finding the nearest point ¢(2*) on a nonlinear manifold.

In the succeeding section 3.4 we introduce pre-image strategies for the case that X is
not a subset of a real vector space but a discrete set with some structural information.
Classical algorithms wont be applicable in this case, since they are based on smooth
optimization. We introduce pre-image algorithms for sequences and labeled graphs and
investigate in section 3.5 the application of calculating the mean of sequences.

3.2 Pre-Images by smooth optimization

In this section we review several existing approaches to solve the approrimate pre-image
problem and propose new techniques. We will start with pure optimization-based ap-
proaches and continue with strategies based on learning which can take advantage of
additional prior information on the pre-image.

3.2.1 Gradient Descent

The most straightforward approach is to use non-linear optimization techniques to solve
the approximate pre-image problem. In the case that ¥ is given by an expansion Zfi 1 b (i),
one can express the objective function in (3) directly by using the kernel trick itself:

N

L(x) = |lgn(z) — C|3 = k(z,2) =2 aik(wi,x) + C, (4)

i=1

where C' denotes some constant independent of . Taking the derivatives of (4) is straight-
forward as long as the kernel function is smooth and continuous in its argument.

In contrast, in the setting of KDE where one has given an output kernel k;, the point
W is specified by its r predicted kPCA coordinates V[y* = [3',..., "] = Té(z*) only
(seeA1.3). Thus the objective function takes the form:

Lx) =V, y" = a3 = kily.y —22&2% v y) + C, (5)

=1 7j=1

where
-

v "on(y) = [D vlau(yy) | dily) = vlki(ys,v)

J J

STRATEGIES FOR CONTINUOUS AND DISCRETE PRE-IMAGE PROBLEMS 49

denotes the projection of ¢;(y) to the s-th. eigenvector of the kPCA basis V,. One can
still formulate gradients, however evaluating the gradient is expensive since one needs to
evaluate all kPCA projections which requires to evaluate the kernel function on the whole
training data for each IV principal directions. Nevertheless, a similar strategy was pursued
in by [61] who applied pre-image techniques for image de-noising.

The problem with a plain gradient descent approach is that equation (4) and (5)
are mostly not linear and not convex. For this reason one has to use multiple starting
values to initialize the gradient descent in the hope that one of the found minima is good
enough. People therefore considered to speed-up pre-image techniques, for example by
taking advantage of special properties of the used kernel function. One such example is
the fixed-point iteration method introduced in [78, chapter 18] which we discuss next.

3.2.2 The Fixed-Point Iteration Method

For kernels with the property k(z,z) = 1, e.g. the Gaussian kernel, one can reformulate
the problem P3.3 as follows:

2* = argmin ||¢.(z) — ¥||3 = argmax ¢.(z) . (6)
reEZ zeZ
The reformulation is possible since all pre-images have the same distance to the origin
2 and therefore the dot-product contains all relevant information. Now for example for
kernels of the form k(z,z) = k(||z — z||?) and the case that W is given as expansion it is
possible to derive an efficient fixed-point algorithm as follows:

0 = —¢u(z)'®
Noop
= 1221 Ozzfazcbk(%) on(2)

N
= Z aik/(l‘i, Z)(xz - Z)
=1

which leads to the relation N
Zi:l ik (24, 2)x;
~ .
Y oinq ik (x4, 2)
This identity does not hold for an arbitrary zy but only for the solution z*. The idea is
now to construct a sequence z1, 29 via

N
ey = din ik’ (zi, 2t)Ti
t+1 — N
> i k! (i, 21)
such that ideally z; converges to the fixed-point in (7). In the same manner one can obtain
a fixed-point based iteration scheme for the KDE setting. Using the same notation as in
section 3.2.1 we obtain

z =

; (7)

Soiy B vk (5, 2)
Zt+1 = N

> i1 B Zj:l U;'k/(l% zt) ‘

Since one does not need to perform any line-search which is typically needed in gradient
descent methods, fixed-point based techniques are generally faster than gradient descent

o (2)]| = \/W =1 by construction.

(8)

50 CHAPTER 3

methods. However, the method suffers similar to gradient descent techniques from eval-
uating all kernel functions for each optimization step, though it needs overall much less
evaluations than plain gradient descent does.

Unfortunately, the fixed-point technique tends to be numerically instable in practice if
initialized randomly. This phenomenon might be due to a) the fact that the denominator
can get too small for an arbitrary chosen start point zy during the iteration, and b) there
exist several regions of attraction which can influence each other and thus might lead to
oscillation or even divergence. A common recipe in this case is to restart the iteration with
different starting points zg often and choose the best candidate of the converged runs. We
present the fixed-point algorithm in A3.1.

An interesting fact about the fixed-point method is that the pre-image obtained is in
the span of the data points x;. This is a major difference to a pure optimization based
technique like gradient descent where the full input space is explored. Thus, in the fixed-
point method the pre-image is constructed using data points explicitly. For example, the
fixed-point algorithm can never generate a pre-image which is orthogonal to the span of
the training data, in contrast to the gradient descent method. Nevertheless, the fixed-
point algorithm shows that in principle one can relate the pre-image not only to a single
point W in feature space but to a complete set of points Dy and thus use side-information
provided by these additional data. In the next section, we discuss a classical technique
from statistics which is used for pre-image calculation and which is entirely based on such
a strategy.

3.2.3 Multi-Dimensional Scaling based technique

Multi-Dimensional Scaling (MDS) deals in particular with the problem of finding a lower
dimensional representation z1,...,zy € R% of a set of points @1,...,xx € R% where
d1 > dy and ideally the distances are preserved, i.e.:

del (aci, wj) = de2 (xz-, .%'j)

Often, such a set of points does not exist and one solves the optimization problem:

N N
{z1,...,2Nn} = argminz Z (dgay (24, 25) — dgas (24, 7))° .

Tloeo®N G577 G

In contrast to the standard MDS setting, in pre-image computation we are just interested
in finding the lower dimensional representation of a single point namely the pre-image z*
only. The basic idea behind the MDS method for pre-image computation is to declare that
the distance from the point ¥ to each point x; of a reference set x1,...,xy should be
related to the distance of the pre-image z* to the pre-images x1,...,xy of the reference
set. This is insofar a reasonable assumption since the feature map is usually considered
to be smooth. Obviously, these distances will not be the same and we need to obtain the
input distance from the feature map. In the following we will describe the necessary steps
to obtain the input distances for the Gaussian and Polynomial kernel and we will discuss
how a pre-image can be obtained using least squares minimization leading to a closed form
solution of the optimal approximate pre-image.

Let us consider the used distance for the Gaussian kernel k(z,y) = e Mle—vll* =
e~ 4% (zy).

log k(, y)

dZ(xvy) - y

STRATEGIES FOR CONTINUOUS AND DISCRETE PRE-IMAGE PROBLEMS 51

Algorithm A3.1 FIXED-POINT PRE-IMAGE CALCULATION FOR KDE

Given data Dy = {z;}},, a feature map ¢y, from a kernel k, an orthogonal basis V. = [v!,... v"]
of the span of points D in the feature space and the number of desired restarts n. Let the predicted
r coordinates of the point y* = T'r¢(x*) according to the orthogonal basis V. in the feature space
Fi. be denoted as [B1, ..., 0]

1. Choose randomly an initial value zy from Dy.

2. Calculate N
o i B Zj:l U;‘k/(xjv)%
- . N Z)
Y1 B Zj:l 'Ujk/(xjv zt)

e

until convergence.
If the denominator is smaller than some e, restart at 1.

Repeat n times the pre-image computation and take the best z from n trials according to the
lowest distance in feature space ||[1,. .., 3] — V., or(2)]|.

Given the distance among two points in feature space

dr, (x,y)" = ||6(z) = o(y)||* = 2 — 2k(z,y),

it is possible to obtain the squared input distance as

d2(e.9)? = =~ log (1 o <x,y>2) . (9)

Thus we see that, given just the expression of the kernel function we can retrieve the
distance of two points in input space. Now, lets consider the Euclidean distance in feature
space. As we noted above, the distance among two points & and ¥ can be calculated
without their input representation. In the case that ¥ is given as expansion, the Euclidean
distance between ¥ and a point @ in feature space is given by

N N N
dr, (x,¥)* = k(z,2) — 22 E(x;, x) + Z Zai, ajk(xi, xj).
i=1

i=1 j=1

Even simpler, if W is given by its coordinates [(1, ..., ;] with respect to an orthogonal
basis V. only, then the feature space distance is simply the Euclidean distance among
coordinates, i.e..:

T

dr (2, @) = ||V dp(x) = VI[P = (3 — 6)% (10)
i=1

where v = V[¢.(x) are the r coordinates of ¢ () respective V.

Now calculating the input space distances between the point of interest W and each
reference point in some training data Dy via (9), we obtain a distance vector d? :=
[d2,...,d%] of size N. This vector can be used to pose an optimization problem similar
to the original MDS optimization problem

N

2* = arg min Z(dé(z,%) —d;)%.

52 CHAPTER 3

Unfortunately this is as hard to optimize as optimizing the distance in feature space
directly. However considering the term d%(z,x;) — d? we see that

d% (2%, @) — d? = o] @i + 2 2F — 2z 2* — &2,
and thus for the ideal case d%(z*, ;) — d? = 0 we obtain the identities
2] 2 =) w4+ 22 —d?, forall 1 <i < N. (11)
Let us write all N equations in matrix form as
20X 2 =2 —d® + 152" 2 (12)
where d3 = [2{ x1,...,25zy] € RN and X = [z,...,2y] € RN and 1y =[1,...,1] €
R?. Tt seems that we did not gain anything since the desired and unknown pre-image z*

appears also on the right side. But note that from (11) and the definition of dy we can
get yet another relationship

=2 2+ d2 — d(sz-’ forall 1 <i<N. (13)

If we average both sides of (13) over all used N points and require that the points in Dy

are centered, that is Zfil x; = 0, we can rewrite the unknown quantity 2*T2* as

T2 2w 2% 4 d? — dgi

I
2|~

s
I
—

I
|-

T
&2 =) 42 3 *

i=1 i=1
——
=0
N
= v (di-dj)
i=1
and we obtain the new equation
1
2X 2" =df — d® + —1n1} (d* — df). (14)

N
The pre-image z* can now be obtained by the least squares solution of (14)
1 1
z* = 5(XXT)TX (df — d*) + N(XXT)TX1N1} (d*> — d3),

where (XX ") denotes the pseudo-inverse of (XX 7). Note that this can be simplified
further because we required the N data points in Dy to be centered. Thus the second
term $(XX)71 X1n1}) (d® — d3) equals zero since X1y = ZZI\; x; = 0 by construction.
Therefore the optimal pre-image reconstruction is given by

2* = %(XXT)TX (d§ — d?). (15)

Note that the nature of the kernel function entered only in the calculation of the input
distance vector in d?, thus in a similar manner one can get pre-images for any kernel by

STRATEGIES FOR CONTINUOUS AND DISCRETE PRE-IMAGE PROBLEMS 53

replacing the calculation in (9). For example for the polynomial kernel k(x1, x2) = (2 z2)?

we would have

d%(x,y) = Vk(z,z) + Vk(y,y) — 2/ k(z,y). (16)

The MDS based pre-image calculation was pioneered by [54], where as their formulation
require to calculate a singular value decomposition of the data beforehand. This is indeed
not necessary and our introduced version is easier and faster.

MDS uses the distances to some other points as side-information to reconstruct the
pre-image. Note that it is non-iterative in contrast to fixed-point methods but still needs
to solve a least squares problem for each prediction. MDS based pre-image calculation is
in particular well suited for KDE because it only requires calculation of distances which
equal the Euclidean distance between coordinates, see (10). If one stores a-priori the
kPCA coordinates of all training points one does not require any output kernel function
evaluation during testing which saves time. Furthermore Kwok suggested to use only
n nearest neighbors instead of all N points which gives a further speedup. We give a
summary of the MDS-based pre-image algorithm in A3.2.

3.2.4 Pre-Images by Learning

Unfortunately, all techniques introduced so far suffer from one of the following points.
They are

e formulated as a difficult nonlinear optimization problem with local minima requiring
restarts and other numerical issues.

e being computationally inefficient, given that the problem is solved individually for
each new point.

e not being the optimal approach depending on the task (e.g., we may be interested
in minimizing a classification error rather then a distance in feature space.)

Consider the case of KDE where we are given training data to learn a map tz between
the sets X and). Using pre-image techniques presented so far, our prediction map I'
consists of a possibly non-convex optimization on each new presented point z*, since we
have to look for a suitable y* €) given its predicted coordinates. This is clearly a
disadvantage since it does not allow to use KDE in more time-critical scenarios. A further
aspect shared by all the methods discussed so far is that they do not explicitly make use
of the fact that we have labeled examples of the unknown pre-image map: specifically, if
we consider any point in x € Z, we know that the pre-image of ¢ (x) is simply x. It may
not be the only pre-image, but this does not matter as long as it minimizes the value of
P3.3 (see page 47).

We propose a method which makes heavy use of this information and can resolve
all the mentioned difficulties: The simple idea is to estimate a function I' by learning
the map ¥ — z* from examples (¢r(z*), 2*). Depending on the learning technique used
this means: After estimating the map I', each use of this map can be computed very
efficiently since pre-image computation equals evaluating a (possibly non-linear) function.
Thus, there are no longer issues with complex optimization code during testing phase.
Note that this approach is unusual in that it is possible to produce an infinite amount
of training data (and thus expect to get good performance) by generating points in Z
and labeling them using the identity ¢ (z) = z. Furthermore, it is often the case that we
have knowledge about the distribution over the possible pre-images, e.g., when de-noising

54 CHAPTER 3

Algorithm A3.2 PRE-IMAGE CALCULATION WITH MULTI DIMENSIONAL SCALING

Given data Dy = {z;}Y,, a feature map ¢; from a kernel k and coordinate matrix Ry =
V1, .,7n] € RN of the data Dy respective some orthogonal basis V.. Furthermore let n be
the number of used nearest neighbors. Let the predicted r coordinates of the point y* = Tr¢(z*)
according to the orthogonal basis V. in the feature space Fj be denoted as [0, ..., 3]

1. Choose the n nearest neighbor coordinates {y1,..., vy} of [B1,..., 5]

2. Center the nearest neighbors via z = % Slay, xp =1 — I

All further calculation requires), x; 2 0.
3. Calculate the Euclidean distances dz(x;,y*) using (10).
4. Calculate the squared input space distance vector d* = [d3, ..., d?] according to (9) or (16).

5. Calculate the matrix X X T of the nearest neighbors X = [z;,,...,¥;] and the squared input
space norm vector dy = diag(X X).

The optimal pre-image z* is given by z* = (XX ")TX(d3 — d*) + z.

digits with kPCA, one expects as a pre-image something that looks like a digit, and an
estimate of this distribution is actually given by the original data. Taking this distribution
into account, it is conceivable that a learning method could outperform the naive method,
that of P3.3, by producing pre-images that are subjectively preferable to the minimizers
of P3.3. In the following we consider the training data {x;}}, that we are given in our
original KDE learning problem as the training data for pre-image learning.

Details of the learning approach

We seek to estimate a function I' : F, — Z with the property that, at least approximately,

If we were to use regression using the kernel k corresponding to Fj, then we would simply
look for weight vectors w; € F, j = 1,...,d such that I';(¥) = w;—\Il, and use the
kernel trick to evaluate I'. However, in general we may want to use a kernel x which is
different from k, and thus we cannot perform our computations implicitly by the use of
a kernel. Fortunately, we can use the fact that although the mapped data may live in
an infinite-dimensional space Fy, any finite data set spans a subspace of finite dimension.
A convenient way of working in that subspace is to choose a basis V. and to work in
coordinates. This basis could be, for instance, obtained by kPCA.

Let Ry = [y',...,7Y] € R™¥ denote the coordinate matrix of the data Dy with
regards to the orthogonal basis V.. Given V., we can decompose I into the concatenation
of I': R" — R% and V!, such that

Z=T(®)=T(V]®).

Note that the task is now to find the pre-image map f‘j ‘R" > RI, j=1,...,dim Z from
feature space coordinates V,T ¥ € R to the input space RY™Z . Note this is a standard
regression problem for the NV training points «;. Thus we can use any arbitrary regression
method, e.g. kernel ridge regression with a kernel k different from kernel k. The map
fj would be then completely given once the ridge regression weights {3',..., 3™ ¢
RNXdimZ are specified. To find the regression coefficients in ridge regression we would

STRATEGIES FOR CONTINUOUS AND DISCRETE PRE-IMAGE PROBLEMS 55

have to solve the following optimization problem (for a discussion on ridge regression, see
also chapter 1)

m
@ =argmin L (o], Tl 87)) + N8|
B =1
Here, L denotes some loss function used for pre-image learning and A denotes the ridge
parameter. Let us give a detailed example.

Example E3.1 A pre-image map for the squared reconstruction error: Con-
sider the estimation of the reconstruction map for the squared reconstruction error ||x —
L(o(z))||?>. A nonlinear map from feature space coordinates V. to the i-th. input dimen-
sion Z can be obtained by collecting all i-th dimensions of all patterns in Dy. Thus we
obtain a vector y € RN where the j-th entry of y contains the i-th entry of the sample

xj € Dy, t.e.; yj = x; The coefficients B can now be obtained by

N N 2
B = argmin’y (yj = DBV ¢l). V] <z><:vr>>> + Al 2.
r=1

j=1
The optimal coefficient vector 3* is obtained by
B = (K + M)y,

where K = [k(V] ¢(xs), VI o(21))]st, and 1 < s,t < N denotes the kernel matriz on Dy
with kernel k. Given some coordinates VI‘I’, the i-th entry of the pre-image z* can now
be predicted as

N
2= Blys(V] ¢(xs), V] ®).
s=1

Note that the general learning setup allows for using any suitable loss function, incor-
porating invariants and a-priori knowledge. For example, if the pre-images are (natural)
images, a psychophysically motivated loss function could be used which would allow the
algorithm to ignore differences that cannot be perceived. Note that the learning based
pre-image algorithm requires additional data to learn the reconstruction map similar to
MDS and the fixed-point pre-image method. However, this is the only method that does
not need any optimization during a testing stage and has an adaptable loss function. Let
us now investigate the performance of all pre-image methods on a de-noising experiment.

3.3 Evaluation of pre-image techniques for continuous input
spaces

In this section we want to compare the performance of the pre-image techniques for the con-
tinuous case in the scenario of KDE. As a task we choose the problem of super-resolution
similar to [49]. In contrast to [49] we have a supervised setup: we have given a set of N
image pairs Dy = {z;, yz}fi 1, Where the image z;, y; show the same content on two differ-
ent resolutions. Let z; be the image with the lower resolution. We apply KDE with input
and output kernel k,[l equal to a Gaussian kernel with the two kernel width parameters
0, 0,. Using this two kernels we apply a kPCA on the input and output images each and
formulate afterwards a regression problem using the extracted feature coordinates. Our
goal is to use kPCA to build an image model of the low resolution images, and then use
a regression model to estimate the coordinates of features corresponding to the higher

56 CHAPTER 3

Algorithm A3.3 LEARNING THE PRE-IMAGE MAP

Given data Dy = {x;}X,, a reconstruction measure [: Z x Z — R, a reconstruction kernel x
and an orthogonal basis V. for the span of the data Dy in feature space.

Calculate reconstruction models [3!, ..., 33] for each dimension of Z via

B = argmin 31 (a1 (@] @) + N8|
1

BIERN Z
For a squared loss function, this can be done by kernel ridge regression. See example E3.1.
After training, a pre-image for a point ¥ can be obtained by
1. Extracting coordinates of ¥ by projection V;r .

2. Perform prediction for each dimension i of Z:

N

=) Blala(V] g(z,), V] W)
s=1

resolution image. After estimation, we need to restore the image from the feature space
coordinates, thus we have to solve a pre-image problem. The overview of the experiment
is given in figure 3.2.

As images we generate gray-scale images of faces using a virtual human modeler soft-
ware>. where we vary the camera and lighting parameters randomly for each frame. To
obtain the small version of a face, we use a resolution 30 x 30 pixel for rendering where
as to yield the higher resolution image we use 60 x 60 pixels for rendering. We generate
500 image pairs and use 5 randomly chosen images as test set. We use the average of the
linear distances of input and output images as kernel widths, which is a reasonable choice
since our dataset does not contain any outliers or isolated clusters. Some typical elements
of the dataset are shown in figure 3.3.

Since we have used ca. 500 images for training we obtain 500 features by kPCA,
however we only keep the first 100 directions since they contain 95% of the variance in

3POSER 3D; www.curiouslabs.com

Fi T 7

o)) T J{Pre-lmage

Figure 3.2: Mappings in KDE used for super-resolution. Super-resolution is performed by build-
ing statistical models of low and high resolution images using kPCA and estimation coordinates
between them. The final image is obtained by solving a pre-image problem.

STRATEGIES FOR CONTINUOUS AND DISCRETE PRE-IMAGE PROBLEMS 57

Figure 3.3: Typical elements from the training set of the super-resolution task.

the feature space. After performing kPCA we use MRS (see chapter 2) to obtain a linear
model from input to output features where we have chosen the rank parameter to be 30
which we determined using 5 fold cross validation on the training set. After prediction
of the 30 output features we reconstruct the output image which is a 3600 dimensional
real vector using the introduced pre-image algorithms: Pre-images by gradient descent,
by fixed-point, by multi dimensional scaling and by learning.

For the gradient based as well as for the fixed-point based pre-image approach we have
used two restarts. For the MDS method we have used 3 nearest neighbors since increasing
the number of neighbors led to a stronger averaging effect and yielded smoothening and
smearing effects. For learning we have chosen ridge regression with a Gaussian kernel
width o where the ridge and the kernel width are chosen using 5 fold cross validation on
the training set by using the squared reconstruction error as score.

Gradient Fix-Point MDS Learning-1 Truth

Figure 3.4: Reconstructed images by applying various pre-image techniques.

As one can see in figure 3.4 the gradient descent and fixed-point pre-image methods

58 CHAPTER 3

can yield results which do not need to be feasible, since they do not take into account
the distribution of output patterns. One can see that both techniques return images with
partially negative gray scale values indicated by a light gray background. Furthermore,
for a high-dimensional pre-image problem the computation of the gradients alone takes
very long and thus the gradient descent technique quickly gets intractable. In contrast,
the fixed-point method is much quicker. For the performed experiments the gradient
descent was 75 times slower than the fixed-point method. However, we can see from the
reconstructed images that the algorithms which make explicitly use of additional data are
clearly superior in reconstruction. Furthermore, a further pleasant effect is that MDS and
the learning based approach are the fastest to evaluate. The gradient based technique
was ca. 1400 times slower than the learning based pre-image approach (including model
selection) on the current experiment. If we compare MDS and learning based pre-image
technique we can see that the learning based approach is a more smoothened version
of MDS, since the learning based approach uses a single model which involves all data
for prediction and not only the possibly n-nearest neighbors as in MDS. This leads to
averaging over more points and thus to the observed smoothing.

We have investigated various approaches for pre-image computation which all are based
on one critical assumption: the pre-image space Z is not-discrete. Currently, there exist
no pre-image method for the case that the pre-image is of discrete nature. To this end,
let us investigate in the following sections the pre-image problem for complex objects as
strings and graphs being discrete.

3.4 Pre-Images for Complex Objects

The pre-image problem is particularly challenging when the target set Z has discrete
nature. For example consider the application of KDE in the setting of machine translation:
one has to map from an input sequence of words to an output sequence of words. The
pre-image is a sequence of words. Alternatively consider the problem of estimating an
endomorphism on the set of graphs given some example input output graph pairs. Here,
the pre-image is a graph. In this case, the problem P3.3 becomes a combinatorial problem
and thus gets very difficult to solve. There exists techniques for the case that the pre-
image is a sequence which require a very special feature space structure. In contrast, our
approach could in principle be applicable for any kernel suitable on Z. However in our
experiments we will use one particular kernel introduced by [46].

Our optimization technique is mainly motivated on randomization principles found in
[66] and on a novel framework for stochastic optimization called the cross-entropy method
which was introduced by [74].

3.4.1 From combinatorial optimization to estimation

In the following we discuss the cross-entropy (CE) method for combinatorial optimization

where we mainly follow [74]. Consider the following minimization problem: Let Z be a

finite set of states, and let £ be a real valued cost function on Z. We want to find a subset
of states with elements z* minimizing £. Let +* denote the attained minimum of £, i.e.:
L(z*) =~" = min L(z). 17

(2%) =77 = min L(2) (17)

The key idea of the CE method is to associate with optimization problem (17) a new esti-

mation problem. To this end, we first define a collection of indicator functions {1¢,(;)<1}
on Z for various levels v € R. Next, let {f(-;v)},v € V be a family of discrete probability

STRATEGIES FOR CONTINUOUS AND DISCRETE PRE-IMAGE PROBLEMS 59

densities on Z, parameterized by a real-valued parameter vector v € V where V denotes
the set of feasible parameter vectors. For a given fixed u € V we are now able to associate
with problem (17) the problem of estimating the probability /() of minimizing the cost
function L, i.e.:

1(7) =Pu(L(Z) <) = Euliziz)<y} = /1{£(Z)<'y}f(Z§ u)dZ, (18)

where P, is the probability measure under which the random state Z has pdf f(-;u), and
E. denotes the expectation regarding the pdf f(-;u). A possible way to estimate ()
would be to use Monte Carlo simulation techniques (see e.g. [56]). That is, drawing a
random sample {Z1,..., Zy} from the distribution f(-;u) and use

1 N
¥ 2 Hezo<n
i=1

as an unbiased estimator of I(y). Note that v is small for the vicinity of minima of
(17). Therefore we aim at estimating the probability of a rare event. In this case large
~’s and small values of the probability density function will dominate and unacceptably
many points will have to be generated by Monte Carlo. In other words, the estimate
will have large variance and in fact Crude Monte Carlo simulations are likely to be high
variance estimators (see [74] for a discussion). An efficient way to reduce the variance of
our estimate [(y) is to propose an importance sampling density f(-;v) and to express [in
terms of f(-;v) as
f(Z;u)

1) = Eoliez)<) 7 75) (19)

An unbiased estimator of () can now be determined using

N
1
l(y) = N Z Liczy<nW(Zi;u,v),
=1

where W(Z;;u,v) = % is called the likelihood ratio, and {Z1, ..., Zy} are now ran-
dom samples from f(-;v). This change of measure allows us now to choose the parameter
vector v such that the variance of our estimate is small, i.e.:

v = argergin E, [1{£(Z)§«/}W(Z§ u,v) — Eyliz2)<yW(Z; u, v)]2 . (20)
v
Unfortunately, the optimal reference parameter v* is seldom available analytically, since
the expectation Eq, 117 Z)SV}WQ(Z ;u,v) cannot be evaluated exactly in the most cases.
An alternative to the variance minimization approach for estimating the optimal reference
parameter vector v is based on the Kullback-Leibler divergence which defines a ’distance’
between two pdfs f and ¢ and is given by

D(f9) = [ale)n 880z = [gle)mgtaid [o)1 (o).

Let us first consider the theoretically optimal importance sampling density g* which follows
from minimizing the non-parametric pendant to (20). It is the variational problem

e §(Z;w) [Zw)*
o =anemin, |l 5~ Btiamen

60 CHAPTER 3

which can be shown to be equivalent to

' _ : f(Z;u)
g —arggmlnEg Lis(z)<y} o(Z) 1(7).

It is easy to see that the optimal density is given by

\ F(Zsu)lr(z)<
g = l . (21)
(7)
Obviously this density is useless, since it requires the knowledge of [(v). However, given
our parametric family of densities {f(-;v)}) we can use the KL divergence to setup up the
parametric optimization problem

v* = argmin D(g", (-1 v)).
vey

Now using the theoretically best possible proposal density ¢g* given in (21), we obtain the
optimization problem

argmin D(g*, f(;v)) = argmin /g*(Z)lng*(Z)dZ—/g*(Z)lnf(Z;'v)dZ

vey vey

= argmax /g*(Z)lnf(Z;'u)dZ

vey

= argmax /f (Z;u) RO In f(Z;v)dZ
veV Z(PY)
= argmax Eylyz 7)<y In f(Z;0)dZ. (22)

veV

Thus, the only relevant part of the KL divergence is the cross-entropy. Note that (22)
does not contain any unknowns but just requires the evaluation of the integral. To this
end we can replace it by a stochastic version and consider solving

v* = argmax — Z Liz(z)<yy In f(Zi;v). (23)
veV

What do we gain by doing so? The advantage of problem formulation (23) compared
to (22) is that for a wide range of density models we can calculate the optimal parameter
corresponding to the minimum KL divergence analytically!

Namely, the optimal parameter vector v* is given now by the solution of the linear
system

8UZN21{£ zy<yInf(Ziv) = 0, 1<i<.

To illustrate the advantage of the CE method consider the example of estimating param-
eter vectors of a Bernoulli pdf for a combinatorial problem.

Example E3.2 Optimal importance sampling parameter for Bernoulli random
Varlables Given that Z € {0,1}¢ denotes a d dimensional bit vector and f(Z;v) =
Hf Vw7 (1—v;)' =% denotes the pdf of the random vector Z. We want to solve the stochas-
tic problem (23) given a set{Z1,...,Zn}. Taking derivatives and considering the extreme

STRATEGIES FOR CONTINUOUS AND DISCRETE PRE-IMAGE PROBLEMS 61

point results in

0 = akazl{ﬁ(zm}lnf(v),

0 = Zl{ﬁ <’Y}avk (Zln< Ui)lZﬁ))’

=1

0 = Zl{ﬁ <v}aa (In(k)+1n((1_”k)1_zjk>)’

Zjk 1= Zjk
_ J J
0 - zl{c N =1
and thus the optimal parameter vy, for 1 < k < d is given by

N
Zj:l 1{£(Zj)§7}ZJk
N
>im1 Hezy<n

Ve =

We can now formulate a simple iterative algorithm where we tune the level parameter
v, estimate the probabilities and determine the next sampling parameters based on KL
divergence. The sampling parameters are updated whenever the level parameter is lower
than the level parameter from a previous iteration. The algorithm is described in A3.4.

Our ultimate goal is to apply the CE method for calculating pre-images of graphs and
sequences. Theoretically we can apply the CE method to pre-image problems with any
graph and string kernels, however in general we expect pre-images with special properties,
thus we have a prior belief about the class of relevant pre-images. Assume thus that we
have given such a prior on objects, how can we extend the CE method to use it?

3.4.2 Adding a Prior to the CE Method

Once the optimal importance distribution parameters v* are estimated we can sample from

the distribution f(-;v*) and continue the optimization process. However, [74] remarks that
if the update rule is modified to

v = av® + (1 —a)o™ !

better performance can be observed. [74] do not motivate this update rule but argue that
this momentum term leads to a smoothing of the estimate v. Let us use the opportunity
to go further.
By considering that v* is an estimate F(Z) from the data we can rewrite the smoothing
equation as
F=aF(Z)+ (1 — o)™,

and it is easy to check that the resulting vy is the solution to the optimization problem

: 1 41
vk = arg min ||aF(Z) — §’UH2 +[|(1 = a)oft — i'sz. (24)

Note that one can interpret this as

v = argmgxPl(F(Z)\U)Pg(vwk_l), (25)

62 CHAPTER 3

Algorithm A3.4 CE ALGORITHM FOR COMBINATORIAL OPTIMIZATION (SEE [74])

Given the number N of data points to sample, a family of distributions {f(-;v)} and the quantile
parameter 0 < o < 1.

Initialization
1. k =1, choose some initial parameter sampling v(%).
While |[v* — v*71|| > € and an update happened in the last ¢ iterations
2. Generate a random sample {Z1,..., Zy} according the sampling distribution f(-;v*~1).

3. Determine the minimization level parameter v*. In [74], it was proposed to sort the Z;

descending according to their loss £(Z;), and set v* to L(Z[1_)n1)-
4. If (4% < 4+

5. Determine the optimal importance sampling distribution parameters v* by solving

N
1
k
= — E 1 In f(Z;;v),
v ar%gljax N 2 (£(z)<yy In f(Zi;0)

6. k=k+1

with appropriate distribution functions P;, P». We can therefore think of the new update
rule as maximum a-posteriori estimate of the parameters under the prior Py(v|v*~1).
Therefore, it is theoretically straightforward to replace this ”continuity” prior by one
which takes into account additional data, thus a data dependent prior. Unfortunately,
to be computationally feasible one has to select a conjugated prior which is mostly not
appropriate for the distribution at hand. In such cases it is still possible to use data to
select a reasonable starting value v° and initialize the solution path for the smoothing
prior.

Since we have introduced our main computational tool, we are now ready to introduce
our kernel of main interest: the marginalized kernel for sequences and graphs.

3.4.3 The marginalized kernel for sequences and graphs

In this section we discuss the use of the marginalized kernel which is suited to handle
discrete data structures like directed labeled graphs and sequences being a special case of
labeled graphs. In the following we consider the general case first: node-labeled, undirected
graphs z = (v, E'), where the nodes are identified with the set V"= {1,...,|z|}, |z| denoting
the order of the graph, the function v : V' — X supplies the labels of the nodes which are
taken from some finite set ¥, and E € {0, 1}/*/*I#] is the adjacency matrix, i.e. e(i,j) = 1
if there is an edge between nodes 7 and j. z denotes the set of all possible graphs.

Even though the matrix E at first sight seems to suggests the use of classical kernels
that take real vectors as inputs, there are two severe problems to this approach:

(ii) Different matrices E can represent the same graph, since the nodes can be re-ordered.
(ii) We want to be able to work with graphs of different sizes.

It was therefore proposed in [46] to compare two graphs by measuring the similarity
of the probability distributions of label sequences generated by random walks on the two

STRATEGIES FOR CONTINUOUS AND DISCRETE PRE-IMAGE PROBLEMS 63

graphs. By using the dot product of the two probability distributions as kernel, the
induced feature space F is infinite dimensional, with one dimension for every possible
label sequences. Nevertheless, the authors developed an efficient way to calculate the dot
product explicitly.

Note that only a subset of F correspond to realizable graphs z. First, the feature space
image ¢(z) of any graph z must be a valid probability distribution, i.e. its components must
be non-negative and sum to one. While this is always satisfied by convex combinations
of graph images, arbitrary linear combinations may lead to negative components. Further
conditions for the existence of a pre-image results from constraints on the probabilities
(if some label sequence has positive probability, then so have its subsequences) and the
finiteness of the graphs (only a countable set of possible probabilities).

We briefly review the marginalized graph kernel introduced in [46], basically following
the notation used there while omitting edge labels. Let €(z) denote the set of all possible
node paths h on a graph z = (V, E), i.e. h € V" statistics E(h;, h;11) = 1 for every
i < n; |h| := n is the path length. We define a probability distribution p(h|z) over Q(z)
by considering random walks with start probability p,(7) at node i, a constant termination
probability p,(i) = A and a transition probability p;(i, j) which is positive only for edges,
ie.if E(i,j) = 1.

Realizing the fact, that a path is a sequence of labels corresponding to connected
vertices, we can define the following kernel for element-wise comparison of paths with
same length:

h
kn(h h/) — 5(Uh17vh/1> H‘k:|2 5(Uhka Uhﬁc)(s(ehkfhhkv e,hk,l,h,k) h| = ‘h’/|
"’ 0 nl # |n

where d(a,b) is 1 for a = b and otherwise 0. Note that in general, it is possible to replace
the hard § function with softer kernel functions k, (v, v"), ke(ess, €};) > 0.4 However we will
restrict the discussion to the § function only. Now any kernel kj, on node paths induces a
kernel on graphs via

k(z,2) =Epplkn(h, b)) = > > kn(h,h)p(h|z)p(K|2), (26)
heQ(z) W eQ(z)

which can be interpreted as the average similarity over all random walks h, h’ occurring
in the graphs z, 2’.

To calculate the conditional distributions p(h|z),p(h/|z") for the random walk h,h’,
we need to define a start, a transition and a termination probability distribution over the
vertices in 3, of h. The start of the random walk h is determined by the probability
distribution ps(h1). Subsequently, at the i-th step, the walk might end with probability
pe(h;) or perform a transition to the next vertex h; with probability p;(h;|h;—1). Therefore
the conditional probability for a path h is described as

|h|
p(hl2) = ps(b1) [[p(Rilhi1)pe(hi). (27)
=2

Note, the similarity to the path kernel structure. Since the graph kernel is the expectation
of kp(h,h'), it involves the evaluation of an infinite sum, making it impossible to evaluate

4For example, if v € X, = R the Gaussian kernel k,(v;,v;) = e_”“f‘_"”f”2 can be used.

64 CHAPTER 3

it directly. However by using (27) and re-ordering we can write (26) as

l

k(z,2) = hmz S > s(ha,hl) x [the, ha—r, by, By y) x q(ha, hy)

L—oo

=1 heQ(z) K eQ(2') k=2
(28)
with
s(hi,hy) = (v, vp)ps(h1)ps(hl),
t(hkv hj—1, h';cv h’%:—l) = 5('Uhka Uh;)(s(ehk_hhk’ 6/hk_1,hk)p(hk|hk_1)p(h;€|h§€_1),
q(hi, b)) = pe(hi)pe(h)).
The matrices s, g have the shape RI**I¥'l_ where as t is of size RIZ*121X1Z'IXIZ'l Now, if we

sort the sums in (28) over the index in the path we unveil the following structure

> s(hihy) x R(hi,hY)
h1

hi

with

L
R(hl,h’l):LIEr;OZZZt(hQ,hl, bR) | [D0 t(he, by by Ry) x g(Ry, By)

I=1 hy hj hi

The convergence conditions were investigated in [46], and are shown to be quite weak.
Particularly, it is required that the used vertex kernel k,(v;,v;) and the edge label kernel
ke(eij, e;j) are positive and less than or equal to 1. This is trivially the case for the used
¢ function. It was further shown that on convergence the following equilibrium condition
is fulfilled:

R(hi,hy) = q(hy,hy) + > > t(i,ha,j, b)) R(hy, bY). (29)
i=1 j=1

This is a linear equation system which can be solved. By reshaping the matrices s, ¢, r to
vectors s, g, € RFIF'L and rewriting the tensor ¢ as a matrix T' € RIFIZ' %212’ the graph
kernel can be expressed as:

k(z,7) = s'(1-T)'q. (30)

Since we have introduced our main similarity measure of interest, let us return to the
question of calculating pre-images. Solving the pre-image problem for sequences and
graphs requires obviously to a) determine the vertex label set 3% € z* and b) to determine
the adjacency matrix E* € z*. We will begin our discussion in the next section with the
case of sequences, since this is a simpler problem due the serial structure of sequences.
Then, we proceed with the reconstruction of graph pre-images, where we will use ideas
from sequence pre-images reconstruction.

3.4.4 Pre-images for sequences

Some applications require to predict fixed-length sequences only such as part-of-speech
tagging or protein secondary structure prediction. In these tasks the target sequence

STRATEGIES FOR CONTINUOUS AND DISCRETE PRE-IMAGE PROBLEMS 65

length m* := |z*| is known (it is the same length as the input). However, for most
applications the predicted sequence length m* is unknown. Therefore let us consider
the case where the output space Z consists of sequences with finite but unknown length
and where the marginalized graph kernel is for sequences (see figure 3.5 for illustration).
Furthermore, let us introduce the symbol € € ¥, which denotes the beginning of a word,
and let |X,| =: Z be the number of all possible symbols. The labels v appearing in the
sequence are elements of some basic alphabet ¥,, and we declare € to be the starting
symbol of every sequence.

The adjacency matrix defines the connectivity of a sequence and trivially for sequences
only the entries F(i,i+ 1) with 1 <1 < m* are non-zero. It is easy to show that adjacency
matrices defined in such a manner are nil-potent, thus there exist a £ > 1 such that

EF =0.
Thus to reconstruct the sequence pre-image we need
e to determine the length of the sequence,

e to know the subset of the alphabet ¥} C X, which is used to construct the sequence
¥ e Z, and

e to determine the order of the symbols, thus to estimate the permutation of the
symbols in 7.

Let us first discuss the issue of determining the sequence length.

The length of z*: It may come as a surprise that the marginalized kernel values do not
contain information about the sequence size. To see why this is the case, consider an easy
example. Fix an arbitrary sequence z and its kernel values with other sequences. Now
consider the sequence 2z which is defined by duplicating z, i.e. it consists of two uncon-
nected copies of z. Thus, the start probabilities (for each copy of each node) are divided
by two, while the transition and termination probabilities remain unchanged. Thus, for
each of the two copies, the feature space representation (the histogram of label paths) is
also divided by two. Adding the histograms of the two copies (which corresponds to use
the combined sequence) recovers the original feature space representation. Therefore, all
kernel values have to be the same. Since the kernel does not help in determining the size,
we have to make use of heuristics. We consider three simple ideas to fix m* := |z*|, the
size of z*:

i) Linear combination of example sequence sizes:
If the point ¥ is given as an expansion, one intuitive idea is to determine m* as a
linear combination of the size of the sequences specifying W. It is natural to give
each sequence the same amount («;) of influence on the size of z as it has on z. Thus
we have the weighted average

N . .
m* = =1 %M (31)

N
D i Qi

where m; is the size of sequence z;. If ¥ is given by its coordinates only, one could
use the coordinate distances ||[V,) W — V[¢(x;)|| of ¥ and some z; for interpolation.

66 CHAPTER 3

VR R Y S S
Figure 3.5: Illustration of all paths which are used for comparison when using the marginalized

kernel on the sequence "K-E-R-N-E-L-S”. A path can start on any node with probability s and
quit on any node with probability A.

ii) Ezhaustive search in a range:
For exhaustive search we need to restrict ourselves to a finite range of plausible
sizes, for example between minimum and maximum size of example sequences. Then
a tentative sequence is reconstructed for each size in the range, and the one best
approximating v is chosen afterwards.

iii) Regression:

The most sophisticated approach is to learn the sequence size. Since in KDE we have
example sequences given in Dy, we can state the order estimation as a regression
problem: Using the kernel map, we explicitly construct features z;, 1 < i < N by
z; = (k(zi,21),...,k(z,2ny)) € RV, Letting y; = |2/, we can apply any regression
method to estimate their dependence on the z.

Learning the sequence length has the advantage that it does not use any knowledge
of the used kernel itself, but has the disadvantage to be the computationally quit
expensive.

Once the size |z*| is estimated, we are able to determine the vertex labels.

Determining the alphabet ¥): Determining the alphabet X7 requires to decide if a
label v; € ¥, is a member of X7, and if so, how many times it appears in the sequence. To
answer these two questions, we will use special properties of the marginalized kernel. We
introduce the trivial sequence, z,,, which consists just of one vertex v; € X and zero edges.
A random walk on the trivial sequence z,, creates a single path of length 1 consisting of
the single vertex label v; itself. Reconsidering the terms appearing in the marginalized
kernel, one sees that the only nonzero terms are

S(hl = Uy, hll - Ui) - ps(h/1 = Ui)7
q(hy = v, By = v;) = pe(h1 = vi)pe(h) = v;),
while T € RI#%I2l becomes a zero matrix. Assuming a constant termination probability
Pe(vk) = A and uniform start probabilities ps(h1 = vi) = 1/m;, the evaluation of the
marginalized kernel yields
k(2o 2) = mak - ps(hi = vi) - pe(vg) = mag - A*/mi,
k(zu,,2") = mj - ps(h* =) - p2(vg) = mjg - A2 /m”,
where m;;, and mj, denote the numbers of occurrence of the label v, in the graph z; and

z*, respectively.
We are now able to find the vertex set by solving for mj:

N

* Mik

=m g Q; Tr; . (32)
=1

. N
my = k(zy,, 2%) -m* /N2 = %ZaN

Mg
ms
i=1

)

STRATEGIES FOR CONTINUOUS AND DISCRETE PRE-IMAGE PROBLEMS 67

The last equality shows that the fractions mj/m* of labels in z* are just the linear com-
binations of the fractions in the input sequences. This can be combined with any preset
order m* of z*.

Determining the vertex set ¥} and the length m*, we have to answer the last question
which is the sorting of the symbols — the sequence ordering.

Determining the symbol ordering Let us construct a lexically ordered sequence z
from the elements of ;. Then our goal is to determine the right sequence ordering of
z such that ideally the re-ordered sequence is the searched pre-image z*. Thus we are
looking for a permutation m* which permutes the sequence z into z*. We therefore aim to
solve the optimization problem
7 = arg min ||V — ¢((=))|?,
TESm

with 7 is a permutation operator on m™* elements and S, denotes the permutation group
of order m.

To apply the CE method to perform optimization over permutation groups, we need
to specify a family of probability functions {f(-;v)} such that sampling from these prob-
ability functions generates valid elements of S,,. To this end, let us define first the direct
representation of a permutation operator m:

Definition D3.2 Direct Representation of a Permutation.: Let 7w € S, be a
permutation operator on m elements, then the direct representation of the permutation
operator is given by the image of w applied to the sorted sequence 1,...,m. Thus the
direct representation is given by a sequence of indices indicating their position in the final
permuted sequence.
For example the permutation m = 1,...,m specifies the identity element in the group
Sm, where 1 = m,m — 1,...,1 specifies a permutation which reverses the ordering of
a sequence. Besides being intuitive, the direct representation of a permutation is not
very convenient for optimization purposes since every element 7(z); in the sequence
m(z) = m(x)1,...,m(x)m depends on a different element m(x);,j # i. For example, any
index can appear only once. Thus, we can not simply specify a distribution function
where each element of 7 is sampled from, since these are not independent. To this end
we propose to use a different representation of permutations, where we basically follow
[52]. Remember that the permutation group S, has m! elements. If we enumerate all
operators w € S,,,1 < i < m!, we can associate with each permutation © € S, a vector
p € P C N if the i-th entry p; of the vector p is constraint to be positive or equal zero
and less then i. Note that the parameters can encode all different m! permutations since
the number of elements in P is
m m
|P| = max (pi+1):Hmax(piqu):m(mfl)...lzm!
{p1,yespm} =1 i—1 Pi

We can embed P into the real space R™ and always project elements of R” back to P
by rounding coordinates to the next integer. Now, if we can find a mapping from a direct
representation of a permutation to P and back, we could specify distribution functions
for each element of the coordinate vector in P independently which is a much simpler
task then defining a distribution function for elements of the direct representation. One
possible encoding scheme introduced in [92] is

A
pi = Z 1{vj>vi}7
7j=1

68 CHAPTER 3

which simply counts the number of elements which are predecessors and are lexically
larger.

Example E3.3 From the Permutation Group to Vector Space: Consider the
sequence x = {K,e,r,n,e,l, s}, and its lexically sorted form & = {K,e,e,l,n,r,s}. We
can encode the required permutation m = (1,2,3,4,5,6,7) — (1,2,5,6,3,4,7) which maps
Z to x in the space P as p = (0,0,2,2,1,0,0).

To retrieve the permutation from the vector space representation we extend the coordinate
vector p as follow
(p1: V1, D Um), With vy, ... v, € X%,

Our goal is now to resort this list such that the resulting label sequence satisfies the
order constraint given by the coordinates p. To this end we perform an insertion sort
like algorithm where we start with the rightmost element v, since there is no element
which can be larger, and p,, is therefore always zero. Furthermore let z be the image of
the encoded permutation which we initialize with v,,. Subsequently, we concatenate the
element v,,_;, 1 = m —1,...,1 with z; and shift the inserted element v,,_; exactly p,,—;
steps to the right, since the symbol v,,_; expects exactly p,,—; symbols on the left. We
continue until we inserted all m* elements, and the resulting sequence z,,, is the image of
the permutation. Let us reconsider the case for example F3.3

Example E3.4 From Vector Space back to the Permutation Group: Let us
decode the vector p = (0,0,2,2,1,0,0). We first assign each possible label in ¥* to p;:

(0: K,0:¢,2:¢,2:1,1:1n,0:7,0:3).

Starting at the last entry and keeping concatenating and shifting we obtain the sequence:

Start: (s),
Insert (r) and shift 0 right: (r,s),
Insert (n) and shift 1 right: (r,n,s),
Insert (1) and shift 2 right: (r,n,l,s),

Insert (e) and shift 2 right: (r,n,e,l,s),
Insert (e) and shift O right: (e,r,n,e,l,s),
Insert (K) and shift 0 right: (K,e,r,n,e,l, s).

We are now ready to apply the CE Method to search for the right permutation. We
propose to search in the vector space P, and before evaluating the loss function we have
to decode our strings first. As sample generating device we propose to use the binomial
probability function with

fwv) =] <5j>ujf(1 e

Note that we only need to search over m* —1 coordinates since the last entry of the vector
p is always zero. For brevity we are going to use the same symbols Z to denote the decoded
sequence and the vector space representation of the necessary permutation. However, we
will sample and optimize over permutations but use our decoding mechanism to calculate
the loss || ¥ — ¢(Z;)||>. Furthermore, to finally use the CE method we need to specify the

STRATEGIES FOR CONTINUOUS AND DISCRETE PRE-IMAGE PROBLEMS 69

update equations for the optimal importance sampling distribution at step k. To this end
we have to find the new parameter v* such that

l
’Uk — arg IIIEXZ 1{‘|‘I’—¢(Zi)”2§7} In f(Z“ Uk_l).

=1

Thus the optimal update is given by

l
_ iz Mjw—o(z)lz=y Zis.

i= (33)

l .
> im1 L1 w—g(2,)l12<})

To finally get the MAP update v* we need to build our prior from possibly given example
sequences in Dy first. Unfortunately this is not possible, since the representation is
size dependent and assumes the same alphabet. We thus select the smoothing update
v* = (1 — a)d 4+ av® ! with some . This way we can still exploit the examples in Dy
to create a reasonable start value v°. For example selecting the nearest neighbor gives
us a reasonable initialization of v°. We summarize the pre-image algorithm for sequence
reconstruction in algorithm A3.5. Finally, note that the stochastic search needs to evaluate
the kernel function many times. Due to (30) this requires to calculate an inverse of a matrix
for each kernel evaluation. For sequences, the involved adjacency matrices have structural
constraints, and thus it is possible to exploit this structure to speed up kernel computation
dramatically.®

In the next section we are going to drop our assumptions on the adjacency matrix and
extend our stochastic search strategy for graphs.

3.4.5 Pre-images for labeled graphs

Since a sequence is a special case of a graph we can use the same techniques from sequences
to determine size m* and vertex set ¥* of a graph = = (X*, E*). Graphs with arbitrary
adjacency matrix F require to decide for m*? edges if they are part of the pre-image graph
z* or not. We are going to discuss mainly undirected graphs which imply a symmetric
adjacency matrix and thus a smaller amount of edges to search.
To decide if an edge exists we propose to model every edge as a Bernoulli variable:
F(Zv)=] v — vy)t-Betd),

ij
1<j<i<m*

Using the CE method we can simulate from the joint edge distribution function f and
obtain an maximum likelihood estimate of the parameter v according to the update law

m* (m*—1)

’Uk = arg mgx Z 1{||‘I’*¢>(Zj)|\2§’y} In f(Zj; 'Uk_l). (34)
j=1

®See chapter 4 in [81] for details.

70 CHAPTER 3

Algorithm A3.5 SEQUENCE RECONSTRUCTION ViA CE METHOD

Given ¥, an example set Dy of sequences, the number [of candidate sequences to search and the
maximum number of void iterations. The pre-image z* = (X, E*) can be found by performing
the following steps:

1. Determine the length m* of the pre-image sequence z* by for example (31).
2. Determine the occurrence frequency of symbol v; appearing in the set X% via (32).

3. Select a nearest neighbor z; € Dy to calculate a start permutation vector p° and thus a
start value for v°.

While ||[v* — v*~1|| > € and an update happened in the last ¢ iterations
4. Generate a random sample {Z1, ..., Z;} according the sampling distribution f(-; v*~1).

5. Determine the minimization level parameter v*.
6. If 4% < AF-1

7. Determine the optimal importance sampling distribution parameters © by solving
(33).

8. Update v* = ad + (1 — a)vF~!

9. k=k+1

The final z* pre-image can be obtained by selecting the best example by sampling from f(-;v").

Thus the best possible update according to the CE method follows by

N
o 1
0= avklN;1{I“I'—¢<Zj>||29}1ﬂf(zj;v),

N d
g Ez; (k1) 1—Eg (k|
0 = Zl{n@azj)nzq}am@ In <vkla (1 — vyt~ B2¢)))
=1 °

i=1
. i . (Ezj(k,) 1-Egz(k, 1)>
- {I1®=0(Z;)I*P<~v} - _
= ! Ukl 1 — ok
and thus

N
¥ Loz 2 Bz, (k1
oy — =L w0z Bz, (0 1) .

N
2 j=1 L w—o(z,)12<)

To obtain a MAP estimate we consider an example graph in figure 7?7, which represents
a molecule used in the study of [19]. Obviously, the adjacency matrix of this graph is very
sparse, thus we should penalize distributions which lead to non-sparse adjacency matrices.
Thus we choose a Laplacian prior

m*(m*—-1)

2

A
Py(v|A) = H 5¢ Al

=1

where A is a free parameter controlling the influence of the prior.

STRATEGIES FOR CONTINUOUS AND DISCRETE PRE-IMAGE PROBLEMS 71

Adjacency matrix E*:

E
o

25 .. lj
m* = 28, EZ:{l6x79x,1x72x}

Figure 3.6: Two representations for an undirected graph. This graph is showing a molecule from
the mutagen database, see [19].

Considering P;(F(Z)|v) to be Gaussian we can get a MAP update by

vf = arg max P\ (F(Z)|v)Px(v|A) (36)

= argmin (F(Z) —v)? + 'l (37)

subject to v > 0, (38)

where 1 denotes a vector of length W with all entries equal to one. Unfortunately

driving components v; to quickly to zero could harm the optimization, for this reason we
allow a basic driving noise level v, and thus modify the inequality constraint (38) to

v >vl. (39)
Note that by adding a further Gaussian prior, which depends on the last estimate v¥~1,
we can integrate the typical smoothing update as well. Thus our final MAP estimate is

given by
v¥ = argmax P (F(Z)v)Pi(v|v" 1) Py(v|)) (40)
v
1 1
= argmin §(F(Z) —v)? + 5(1) —oF)2 4 w1
v
subject to v > v.

If we solve the unconstrained problem and project back to the feasible set afterwards, we
can give a closed form solution by

vF = max <1u, % (F(Z) + vkﬂ) -)\1> , (41)

where the max operation is component-wise. To initialize v we can use the nearest neighbor
from Dy, analogously to the sequence pre-image case. A summary of the final pre-image
algorithm is given in A3.6.

In the next section, let us investigate the introduced pre-image algorithm for sequences.

72 CHAPTER 3

Algorithm A3.6 GRAPH RECONSTRUCTION VIA CE METHOD AND SPARSITY PRIOR.

Given W, an example set Dy of graphs, the number [of candidate graphs to search, the sparsity
penalty A, a drift noise parameter v and the number ¢ of maximal void iterations. The pre-image

*

z* = (X, E*) can be found by performing the following steps:
1. Determine the length m* of the pre-image sequence z* by for example (31).
2. Determine the occurrence frequency of symbol v; appearing in the set X% via (32).
3. Initialize proposal adjacency matrix E* by nearest neighbor.
While ||[v* — v*~!|| > € and an update happened in the last ¢ iterations

4. Generate arandom sample {Z1, ..., Z;} according the sampling distribution f(-; vk_l).

5. Determine the minimization level parameter v*.
6. If v7 < AF~1
7

Determine the optimal importance sampling distribution parameters F'(Z) by solv-

ing (35).
8. Update v* = max (1v, 3 (F(Z) + v*1) — A1).
9. k=k+1

The final z* pre-image can be obtained by selecting the best example by sampling from f(-;v*).

3.5 Interpolating Sequences

Assume that we have given a set of sequence, and our goal is to construct new sequences
in the vicinity of the given sequences. We could tackle this problem via our pre-image
technique for sequences.

Let us define the linear combination of discrete objects by the linear combination of
its coordinates given a feature space embedding ¢,. For example, to obtain the mean
sequence z* of all patterns we would need to calculate

N
1
" = argmin ||| = ; V5 o) = V]gp(2)|P,

given some orthogonal basis V', of the subspace spanned in feature space Fj, by all points
in Dy = {x;, yi}i]\il. In this subsection, we want to investigate if it is possible to interpolate
between sequences x1 and xo. Thus, we seek to find a pre-image according to

z* = argnéig (1 =)V} o(x1) +aV] o(x2) — V] on(2)|?, for a € [0,0.1,...,1].

To this end, let us introduce two stochastic automata A; = (m1,T1), Ay = (w2, 1) with
five states each and different transition probability matrices T7, T> and different start prob-
abilities 1, m9. We initialize both transition matrices randomly, where we have selectively
removed some entries and ensure that each row sum to 1 (see figure 3.7). By sampling from
these automata we generate 250 sequences of length 20 <[< 30 from each automata and
calculate the nonlinear principal components using the marginalized kernel and stopping
probability %

Let us now pick randomly the two sequences x1,zs (shown in figure 3.9) which are
generated from the automata Ap, As respectively. We use algorithm A3.5 with various
size of candidate sequences [and various maximum iterations. We compare the relative

STRATEGIES FOR CONTINUOUS AND DISCRETE PRE-IMAGE PROBLEMS

73

225552344555552444555
44555555555553333444445555
124555524455555555334
33345555555555555555525344555
33333445555252225553
44455555521333334444445555555 A
3333444445555552252345555533
1233334444444445344444455255
11255555555333333333333344
4445333344444445555555244553

14454425554445525555

25555235554455555555

12555555555555544255
1555542555555555525555555552
23333442355555234444

11555544255425555235 A,
23342555555542312355

14255555544233425523
12555542352235252344444544444
23334444255555555555

Figure 3.7: Used automata and typical sequence sampled from automata.

10

k()\k)

A/max

!
)

=
o

-3

O Spectrum of Sequences

10 y

40 60 80 100
Eigenvalue

Figure 3.8: Using the marginalized kernel, 90 % of the variance is retained in the first ten principal
directions where we have use the first two for plotting paths.

74 CHAPTER 3

distance of our pre-image sequence with the nearest neighbor from the sampled data, where
we use the feature space distance of the nearest neighbor as normalization constant. The
found sequences are shown in table 3.9. In figure 3.10 we plot the first two principal

1.0021

o Sequence —— Best from current sample

0.0 | 2112334552555533455555624 0 L — Bestso far

0.1 2223312553345545555555

0.2 2312322553345554555555 0.998

0.3 2122532533455354555555

0.4 2152512533455554554555 % 9%

0.5 12524252535545555555 = o004l

0.6 122525524555545555555

0.7 | 12525224525455555555555 0.992|

0.8 1255225255554555555555

0.9 1225245552555555555555 0-99r

1.0 12555552555555252555 1 o oas ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50

Iteration

Figure 3.9: Left: Found pre-image sequences for a = 0,...,1. Right: Sampling and iterative
refinement of distribution while using the CE method for sequence reconstruction.

coordinates of all sequences and the relative distance of synthesized sequences. Note that
the found pre-image is better than the nearest neighbor in regions where the data is sparse,
which is in our case in the vicinity of the mean.

3.6 Conclusion

In this chapter we were concerned with the pre-image problem in kernel methods. Thus we
have considered the problem of reconstructing patterns from a feature map. We have in-
troduced techniques to reconstruct corresponding patterns in the input space which avoid
difficult and/or unstable numerical optimization and are easy to implement. Compared
to classical approaches, the new methods have the advantage that they are numerically
stable, are much faster to evaluate and better suited for high-dimensional input spaces.
Algorithms as KDE can benefit from this fact, since they need to solve the pre-image
problem for each prediction. We have introduced one pre-image technique based on re-
gression which is 3 orders faster in evaluation than the classical technique solely based on
ptimization while yielding better results.

Pre-image techniques were introduced when the input space is discrete and gradients
do not exist. We have explored pre-image algorithms for structures like graphs and se-
quences and have incorporated a-priori knowledge in the pre-image learning stage which
is crucial for discrete pre-images. We demonstrated the algorithm for sequence pre-images
by constructing the mean of sequences.

The pre-image problem is an ill-posed problem. Therefore, we conclude that recon-
structing the pre-image can benefit substantially from any additional information one can
provide to the reconstruction algorithm. As was noted in the introduction, since the pre-
image problem is the problem dependent front end of KDE, each application will require
its own special pre-image technique. This chapter provides an arsenal of methods that
can be used for this purpose.

STRATEGIES FOR CONTINUOUS AND DISCRETE PRE-IMAGE PROBLEMS

o Sequences from Automat A
+ Sequences from Automat A2

—— Reconstructed Path using CE

a-1)

o Sequences from Automat A1
* Sequences from Automat A2
—— Reconstructed Path using CE

<><>
<><><>

b-1)

o Sequences from Automat Al
* Sequences from Automat A2
—— Reconstructed Path using CE

o Sequences from Automat A
* Sequences from Automat A2
—— Reconstructed Path using CE

o
o
o
o
&
o 00 >
o
o o 0% %
o © *
*
*
o
o

Figure 3.10: Synthesized interpolations for various experimental settings projected onto the first
two eigenvectors. Original data with start (o = 0) and end (« = 1) points of interpolation are
marked. a) Using 5 samples and 5 failed iterations. b) Using 20 samples and 5 failed iterations.
c¢) Using 20 samples and 20 failed iterations. d) Using 200 samples and 20 failed iterations. The
found pre-image sequences are the better the longer we search and the more samples we use for

sampling.

<><>
<><><>

d1)

Relative Reconstruction Error Relative Reconstruction Error Relative Reconstruction Error

Relative Reconstruction Error

11r

0.95F
0.9r
0.851
0.81

0.75F

[—=— Relative Distance of Pre-Image |

Nearest Neighbor

0.6

11r

1.05¢

0.81

0.75F

0.7r

0.65F

0.2

0.4 0.6 0.8 1
o

a-2)

[—— Relative Distance of Pre-Image

Nearest Neighbor

0.6
o]

1.05¢

0.95
0.9

0.85

0.7r

0.65F

0.2

0.4 0.6 0.8 1
o

b-2)

[—— Relative Distance of Pre-Image

Nearest Neighbor

0.6
0

11r

0.95
0.9
0.85
0.8r-

0.75F

0.65-

0.2

0.4 0.6 0.8 1
a

c-2)

[—— Relative Distance of Pre-Image

Nearest Neighbor

0.6
0

0.2

0.4 0.6
a

d-2)

Chapter 4

Speeding up KDE by Reduced Set
Methods.

Geschwind gewinnt.
— German aphorism —

Kernel Dependency Estimation uses various kernel algorithms which all require ex-
tensive calculation of kernel functions during prediction. For time-critical applications
such as robotics this is a serious drawback. In this chapter we investigate post-processing
techniques aiming at speeding up the kernel expansions involved in KDE.

4.1 Introduction

In the introductory chapter 1 it was mentioned that kernel algorithms are mostly based
on the representer theorem (see T1.3, page 12) which guarantees that the solution of the
optimization problem

N
w* = arg minZE(yi,xi,quﬁk(xi)) + Q[w]
=1

is in the span of the mapped data, i.e. w* = Zfil ;¢ (xz;). Here, x,y are the training
data Dy = {x;,y;}}Y, and ¢} : X — Fy corresponds to the feature map implied by the
kernel function k. As already mentioned in the introductory chapter, the representation
in terms of kernel expansions is also called the dual representation.

Obviously, the computational complexity of the prediction equation

N T N
w' gp(x) = <Z Oéi¢k(l’i)> () = aik(z;, o) (1)
i=1 i=1

depends on N, the size of the expansion necessary to express w. Furthermore it depends
on the time it takes to evaluate the kernel function k itself. Let us assume that the kernel
function is atomic, thus we will ignore its time complexity and our interest is to reduce
the number of kernel evaluations only. ! Therefore, the sparsity of the dual representation
(1), i.e. the number of coefficients « in (1) not zero, is of great interest since it determines

'For an approach concerned with speeding up the kernel function, see [48].

78 CHAPTER 4

the number of necessary kernel computations and thus effectively the prediction speed
which is our main concern in this chapter. For this reason, we will investigate so-called
reduced set techniques, which try to reduce the number of kernel evaluations in the dual
representation and thus aim at increasing prediction speed. Essentially, such methods
might become useful in one of the following scenarios:

(i) if the predictor one wishes to compress is already sparse, but the basis it chooses
still has linearly dependent or close to linearly dependent examples (e.g., in SVMs
in the presence of noise [2, 87]),

(ii) if the predictor always takes expansions in the full dataset as in, e.g., the typically
used methods in KDE such as Ridge Regression or Kernel PCA,

(iii) when one wishes to construct a multi-output predictor where each predictor is sparse
but there is a redundancy due to independent learning of multiple outputs.

In particular we will focus on reduced set selection(RSS)? techniques which we intro-
duce in the next section. Before doing so, let us discuss in the following why it is possible
to drop examples from the expansion in (1). We present two reasons which give rise to
the two classes of algorithms in the literature.

Linear Dependence Consider the case that X is a real vector space, e.g. R? and we
are using a linear kernel function corresponding to the identity map as feature map ¢.
In this case, whenever we have more points N than dimensions in feature space, the set
of points {z;}X, cannot constitute a linearly independent family. It is clear that in this
case there must exist a smaller expansion, i.e

dim Fy, N
N>dimF, =3 > Bigelery) = Y cidr(i),
i=1 i=1
where [are new coefficients and I C {1,..., N} is an index set choosing a linear indepen-

dent subset of points of the training data Dp. This is not very exciting so far since our
argumentation was based on the assumption that we use a linear kernel. Interestingly, the
situation does not change essentially when we use a non-linear feature map. Although the
dimensionality of Fj, is much higher than N, the number of points in the high dimensional
subspace are likely to span a space which is of smaller dimension than N. In the special
case that the feature map of kernel £ corresponds to a high but finite dimensional feature
space, this is surely the case for IV tending to infinity. However in practice, even for kernels
which lead to an infinite-dimensional feature space such as the Gaussian kernel, one will
yield almost linearly dependent feature vectors due to precision effects, see [87]. We will
demonstrate this effect in the experimental section.

Irrelevant span Consider the case of classification and that the hyperplane normal
lives in a subspace of all N points. In such a situation, although the N points in the
dataset span an N dimensional feature space, the hyperplane can be expressed by less
points. Therefore, the linear independence of the points is not relevant for the task at
hand. Note that from this fact we can formulate the selection task as: Drop points as

2Note that a related, but more difficult task is that of reduced set construction. In that task one
searches for weights (3; and vectors ¢ (z),, where ¢y (z), are not necessarily in the training set. This results
in algorithms which give higher compression rates, but are much slower and more difficult to optimize, see
e.g. [13].

SPEEDING UP KDE BY REDUCED SET SELECTION 79

long as it does not harm the classification rule. We will see later how we can formulate a
concrete optimization problem which tries to solve this task.

Due to the presented reasons, the same point w in the feature space Fp can be ex-
pressed by multiple linear combinations of ¢x(x;) almost surely for the typically used
kernel functions. Note that this is in contrast to the convexity property of the involved
optimization problem in (T1.3), e.g. in SVMs the solution w is unique, but may have
multiple representations in the dual space. In the following sections, we review existing
techniques for RSS which try to solve one of the tasks: removing linear dependent points
or trying to drop irrelevant points. Afterwards we propose new methods for the concrete
case of classification J = {41, —1} and regression)V = R. We generalize RSS to the
multiple-output case Y = {1,...,d} and) = R? with d > 1. Compared to existing
methods, the methods proposed are faster to compute, yield similar or higher compres-
sion rates and are especially efficient in the multi-output case. Finally we validate the
introduced algorithms experimentally on several classification and regression benchmarks,
highlighting when RSS proves to be useful.

4.2 Existing reduced set selection techniques

In this section, we review existing techniques for reduced set selection techniques. In
particular, we follow [78] and start with techniques trying to remove linear dependent
points from expansion (1).

Approximations based on rank deficiency It can be shown that linear dependence
between Dy = {z;}¥, in feature space results in a rank deficient kernel matrix.
Theorem T4.1 Rank and Linear Dependence

The mazimum linear independent subset En, C Dy with No elements limits the rank of
K to Ny, where K is the matriz of the inner products K;; = ¢(z;)" () = k(x;, x;).

Proof. We give a constructive proof. Write K in its spectral form K =).,)\i]\ilviv;.
Obviously rank K equals the number of nonzero eigenvalues A. Furthermore the eigen-
vectors of the empirical correlation matrix Zf\; L d(z)¢p(x)T can be expanded in the basis
{v1,...,un} formed by the eigenvectors of K i.e. z; = Z;\le v;j¢(x). Therefore, an eigen-
value larger then zero means that there must be at least one point x € Dy with (Z)(iL‘)TZZ' >
0. For all nonzero eigenvalues); select one point with ¢(x) "z > 0 = Z;VZI viijxi > 0.
We can only select » = rank K points and since zzT zj = 0 for all ¢ # j we have selected
r linearly independent points. Since the remaining eigenvalues are zero, any further point
must be in the span of the selected points since it is in the span of the eigenvectors z;. [

This property was used in Downs et al [21] (see also [79]) to select a subset of size
rank K. The subset was selected by computing the row echelon form of K and discarding
points which lead to zero rows. Once the subset Z = {z; Z]-le C Dy is chosen, the
expansion coefficients G can be calculated as

f= Kg,lZKZ,Xaﬂ (2)

with
K725 = k(zi,2;), and Kz x,; = k(zi, ;).

The problem with rank based techniques is their computational cost. The rank is very
expensive to calculate for bigger samples since the computation complexity is O(N?3) (row

80 CHAPTER 4

echelon form, eigenvector decomposition, etc.). Furthermore, the compression rates may
not be as one would like since this is a lossless technique, e.g. for RBF kernels which lead
to kernel matrices of full rank (see [60]) no compression is possible®. This is a general
property of RSS methods aiming at identifying linearly dependent points. Alternatively,
one might sacrifice some accuracy in favor of sparsity which leads to the so-called lossy
compression schemes. The next method is based on this idea.

Using an additional penalizer The ¢; penalization method suggested in [78, sect. 18.4.2]
simply attempts to construct a sufficiently good approximation of w by solving the fol-
lowing optimization problem

arg min

2
; +WZCi|ﬁi| (3)

w — Z Bidk (),

where parameter + determines the trade-off between accuracy and sparsity. The first
term in (3) tries to represent the original model w as good as possible whereas the second
term keeps the coefficients as sparse as possible. The weights ¢; specify a prior on the
importance of reducing the weight of example ¢. Choosing ¢; = 1, ¢ = 1,..., N would
lead to a uniform prior on dropping a point. Expression (3) yields a numerically tractable
quadratic programming problem. However, if all patterns are used (Vi : ¢; = 1), this
formulation has the disadvantage to be of cubic complexity in the number of patterns, i.e.
O(N3), which might be too expensive. For the special case of SVM, one can follow [79]
which suggested to take ¢; = 1/q; in order put more emphasis on reducing smaller weights.
In that case, one can simply ignore the points with a; = 0 which for the SVM method
gives a complexity cubic in the number of support vectors, i.e. O(#SV?3). However, for
kPCA or Ridge Regression which are not sparse, this does not hold and there is no prior
regarding the expansion.

Analog to the single-output case, the concept of additional penalizers can be used for
a multi-output/class scenario which leads as well to a quadratic optimization problem:

arg min Z

BIE,...,BPEER2N LERN

w = (BT = 87)n(x);

7

2
+ Z ci&i (4)

subject to ‘ ‘ A A
BB <&, &880 =0

Here &; are variables which measure the weight of a sample z; for each of the ¢ outputs.
Note that the solution of this optimization problem has complexity O((Nq)?) where N
is number of examples and ¢ is number of outputs. Thus solving this problem does not
scale well with the number of output dimensions involved. For example, if we consider
the case of kPCA and if we would like to keep all principal directions the complexity
of solving (4) would be O(N*%). Another drawback of this method is that controlling the
resulting approximation error ||w—Y", Bi¢x(x),||* by adjusting v seems to be quite difficult
in practice.

4.3 Fast Reduced Set Selection

In this section we describe two novel algorithms for achieving faster reduced set selection:
hyperplane matching pursuit, and minimization of the so-called zero-norm. In particular,

3 Apart from finite precision effects on computers. This may explain why [21] reported a reduction in
SVs for RBF kernels.

SPEEDING UP KDE BY REDUCED SET SELECTION 81

we focus on generalizations of these methods that are especially efficient in the multi-
output case. We start with the application of a classical algorithm known as matching
pursuit to reduced set selection. Afterwards we extend it to the case that we do not want to
compress only a single but multiple linear models {w?, ..., wP} at once. As an alternative
to matching pursuit, we investigate the usage of the so-called zero-norm minimization for
reduced set selection. Let us begin with the matching pursuit algorithm.

4.3.1 Hyperplane Matching Pursuit

Matching pursuit (MP) has been used before in the machine learning community to greed-
ily train kernel classifiers by [96]. The general approach of matching pursuit works by
adding one training example on each iteration, trying to improve a given error measure,
e.g. classification or regression loss. In our application we will consider the error measure
||w — w||? where W is our approximation which is given by @ = Y\, Bi¢r(z;) and w is
the original expansion (e.g. the hyperplane normal in SVM or an eigenvector expansion
from kPCA). Note that the error measure can be expressed using kernel functions only.
MP starts with the empty model w = 0 and is given at iteration ¢ > 1 the model w and
a current set Z = {z1,...,2;—1} of samples used for the new approximation w. For each
iteration r, it tries to identify the optimal yet unused sample and its expansion coefficient
0, by minimizing the error measure, i.e.

r—1
(Brozr) = argmin |lw = Biow(z) — Bow(2)]> (5)
i=1

2€DN\Z, BER

Note that we consider the set of Z = {z;}/_; to be a subset of the originally given training
data Dy, in contrast to reduced set construction. With increasing r, the error must
decrease and therefore the approximation has to become better. However, we can simplify
(5) by decomposing the minimization problem into two simpler problems that are faster
to solve. Instead of minimizing the distance over the new expansion coefficient and the
new sample index at the same time, we can also identify the pattern being as collinear in
a first step, i.e:

w' ¢p(z)
wlw - ¢p(2)Top(2)|

zr = argmin Z (w, ¢x(z)) = arg max
2€DN\Z 2€DN\Z

(6)

Afterwards, in a second step, we pick the optimal expansion coefficient by:

r—1
fr = axg minfuw - > Bidw(z) — B () (7)

i=1

Note that all operations can be expressed with kernel functions only and thus it is not
required to operate in feature space directly. We summarize this algorithm in A4.1. In step
(2) the example is added to the reduced set which results in the largest decrease in w’ =
|lw — ||? in a greedy forward selection manner. In step (3) the resulting multiplier 3; is
set. This process can be repeated until either one achieves a certain tolerance ||w—||? < €
or alternatively one could measure the error rate (which is what one is really interested
in) on a validation set. We now discuss possible improvements of the basic algorithm.

Backfitting The decrease in ||w — w!|| at each iteration can be improved considerably
by optimally adjusting all ; in the currently selected examples, rather than just the

82 CHAPTER 4

Algorithm A4.1 MATCHING PURSUIT ON W

Given stopping criteria €, a kernel matrix K, w = Y, a;¢y(z), and training points Dy = {z;, y; 1Y,
Initialization

1. i=1, @' =0
While ||w — w?||? > €

2. Pick best sample z; by solving (6)

3. Pick best coefficient 3; by solving (7)

4. Set new approximation W't = + B;¢pr(z;)

5. i=1+1.

Final approximation of w is given by w = Zj Bjdr(xj).

new incoming example. This approach is called backfitting, which is a standard trick in
adaptive filtering [76] and was also used for kernel matching pursuit by [96]. To do this
one solves

r—1
B = argmin||w — Y Bidx () — Bréx ()| (8)
PERT i=1

Thus we re-optimize all previous found expansion coefficients. Note that, given w =
Zf\i 1 @i¢p(x;) , we can obtain B analytically as as

3= KilzKZ,Xa- (9)

Here, Kz 7 denotes the kernel matrix between examples in Z (these are picked by matching
pursuit), and Kz x is the kernel matrix between all patterns in Z and all patterns used to
express w. Obviously, performing backfitting has a higher computational cost per iteration
than step (3) of the basic algorithm A4.1. However, note that backfitting costs O(|Z|?)
for a single matrix inversion and is still more efficient than £;-minimization in section 4.2
which has complexity O(N?) since usually |Z| =7 < N.

To improve the speed of backfitting, we can use the fact that the expansion is extended
at each iteration by a single new sample z, and therefore the matrix Kz 7 has the block-
matrix structure

Ky — < Kz ey Kz)
Z,7 = K K .
Z,72\{zr} {zrh{zr}

We can use the inverse obtained in a previous iteration to quickly construct the new
inverse. A straight forward way to implement this is to perform a Cholesky factorization
and to apply the matrix inversion lemma. Before doing so, let us rename for convenience
our quantities by K, = Kz 7, K, = KZ\{zT},Z\{zT}’ kr\s = KZ,Z\{zT} and k. = K{zr},{zr}‘
We can rewrite the kernel matrix K, evaluated after iteration r as

K kr\s
K’r — (k;r\s I{,‘rr) .

SPEEDING UP KDE BY REDUCED SET SELECTION 83

Now, the inverse after iteration r can be written as as

-1

K kr 5
1 _ T _ _
o Ks +)‘Ks 1k7’\skr\sK5 !)‘Ks 1kr\s
- T) (11)
()\Ks_lkr\s) A
with A = T 1K,1 T We apply now the Cholesky factorization and obtain K, ! =
T R\ s s T\s

RTT R,., which leads to the final recursion equation for the matrix inverse of K,:

Ry 0
R, = < VAR Rk, VA) (12)

In general we found out that backfitting is a critical step in MP style algorithms and that
using MP without backfitting is by far worse.

Optimizing the real-valued output We currently minimize ||[w — @||?>. However,
we are not so much interested in this difference as in the difference in prediction of the
two rules. From the Cauchy-Schwartz equation the latter is only an upper bound to the
generalization error, namely:

ez = Eqllw " dp(2) — i " op(@)|* < sup k(z,2)[lw —d]|*.

While we try to minimize the right hand side, we could try to minimize the left hand side
by the empirical estimate of e;, namely &, = + SN w T ¢r(x); — 0" gp(x),||* which is
the squared difference of the predictions on the training set. Interestingly, the 8 which we

obtain by minimizing (8) are equivalent to the # which minimize:

|Z]
712 T ot) — 0 o) (13)
=1

as the minimizer of (13) is also (9). This shows that the ||w —||?> minimizer is suboptimal
in terms of prediction as it only minimizes the difference in prediction on a subset of
the examples. Thus in principle it is always possible to improve backfitting by using a
validation set.

Using Cholesky factorization and matching pursuit we have obtained an efficient re-
duced set selection algorithm. Let us now extend its applicability from compression of a
single model to the compression of multiple models.

4.3.2 Multiple-Hyperplane Matching Pursuit

In multi-class classification or multivariate regression one typically finds a solution which
is a combination of several linear models, e.g. in the one-vs-the-rest or one-against-one
approaches [22] of classification one obtains a set of classifiers. For example in one-vs-
the-rest classification one trains p classifiers for p classes, where the j-th hyperplane w’
is learned with examples labeled positively if they are in class j and negative otherwise.
This gives a single final meta-classifier:

f(z) = arg lrgfgp(wj Ton(@))

84 CHAPTER 4

where each w’ is given again by an expansion of data points, i.e.:
N
J— E : J)
w! = a; o (x;).
i=1

If we use use the standard simple model reduced set methods, we could compress each
hyperplane independently. However, the main computational cost we are trying to reduce
is in the calculation of the overall number of evaluated kernel functions. Thus we would
rather minimize the union of expansion vectors [{i : 3%, |oj| > 0}| than the sum:

?:1 {i: |ag | > 0}|. We thus wish to couple the compression steps to compress all the
hyperplanes {w!, ..., wP} all at once. We can do this in the matching pursuit algorithm
by choosing the next sample z, as the best sample which minimizes all reconstruction
errors together, i.e.:

p r—1
2, = arg min minp Z lJw’ — Zﬁfgbk(zl) — Bl iz
=1

ZTGDN\Z /6}7---767”]:1

Analog to MP for the single model compression case, we can break this problem into
parts and pick the optimal sample z, and expansion coefficients one after the other. Thus,
to perform Multiple Hyperplane Pursuit, we only need to replace the error measure in
Algorithm A4.1.

One can argue that MP performs sub-optimally since it is a greedy approach. To this
end, in the next section we will try to improve the existing penalty based approaches by
considering a penalty term that enforces sparsity in the strictest possible way: The Zero
Norm.

4.3.3 /lyp-norm Reduced Set Selection

Our central goal is to approximate the vector « of our original model w with a new sparse
vector 3, ideally minimizing the number of nonzero coefficients of 3. The pseudo-norm
which implements this is the co called zero-norm:

18lo = I{8: # 0},

i.e. the zero norm counts the number of non-zero elements in the vector 3. Thus, ideally
we would like:

B = argmin| |80 (14)

subject to
2

=0 (15)

N N
Y aidn(i) =) Bidw(xi)
i=1 =1

Use of the so-called zero-norm has been researched before in the field of feature selection
by [58, 98]. In [98] it was shown that the above problem is related to the problem:

N
B = argmﬁinZln(e +15il) (16)
i=1

subject to (15), where the € > 0 is sufficiently small that it can be ignored when 3; > 0
but large enough to keep In from going to —oo if 3; equals zero. This new objective

SPEEDING UP KDE BY REDUCED SET SELECTION 85

function is shown to be an upper bound of the zero norm. It has the advantage of being
smooth which implies that the 3; can be computed by standard methods for continuous
optimization, e.g. gradient descent. Instead of solving (16) by a plain gradient descent
type algorithm we we will follow [98] and derive an iterative algorithm based on sequential
linear programming and multiplicative updates. Before introducing the details, let us
reformulate the objective function in (16) to get rid of the absolute value. We introduce
new optimization variables and add additional constraints such that the absolute value
will be automatically implemented as follows:

N
B,v = arg 1}31111)1;1n(6 + v;) (17)
subject to
N N 2
D aigw(xi) = > Bigwlx:)|| =0 (18)
i=1 i=1
and —Bi < v < 6. (19)

Our goal is to solve convex programs in the vicinity of the current expansion vector 3* that
identify a special direction of descent for the variables 8 and v. If we would choose the
direction of steepest descent we would need to solve a non-convex optimization line-search
problem. In contrast, we will construct our descending directions in such a way such that
this can be avoided. Let us first denote by [(v) the objective function in (17). We start
by considering the vicinity of [at a point v* and make a first order approximation that
yields:
f(v) =1(v") + Vi(v")T ('v — 'vk> ,

k

where v" is our reference vector in Rf resulting from previous iterations. The gradient

can be easily identified as Vi(vF) = Zf\il vik Therefore, the new optimization problem

18

N
v;
,v = argminl/(v) = arg min — 20
B gminl(v) gﬁﬁv;%k (20)
subject to
N N 2
> k(i) =Y Bicw(xi)|| =0 (21)
i=1 i=1
and —0Bi < v < G (22)

We can now re-parametrize the optimization problem by replacing v, 3 via the new vari-
ables v/, @', where each component v}, £, is given as v, = 5—,@ and (] = f—,: This leads to
the final program

N
g.v = argm}ql}l;vl{ (23)
subject to
2
N N
> aidk(wi) =Y Bivfor(a)|| =0 (24)
— —
=1 =1 i

and —fB <l < Bl (25)

86 CHAPTER 4

The solution to this optimization problem are the vectors v’, 3" with
B =R 'Sa and o =3,

where R;; = vfk(z;,z;) and S;; = vFvFk(z;,z;). If we start for example in the first
iteration with v} = [1,...,1] we obtain the update equation

ot =B

This procedure typically converges in 10-20 steps. However, note that so far the min-
imization in (14),(15) will give a lossless compression. If we want to have a trade-off
between sparsity and model reconstruction error we can adopt the same approach as in
the ¢1-minimization (see section 4.2), and by a combined optimization functional

2

N N N
arg min Z a;or () — Z Bidr(xi)|| + Z In(e + |Bi]) (26)
A= i=1 i=1
Like in ¢;-minimization, one is required to set the parameter v a priori. The com-

putational complexity of this optimization is higher than ¢;-minimization because one is
required to solve multiple iterations of compression, rather than just one. However, on
each successive iteration, there are less variables as one can prune the variables which
have already obtained 3; = 0.

To compress multiple hyperplanes {w!,...,wP} we can easily generalize the previ-
ous algorithm. We simply learn $) for each hyperplane j, where we wish to minimize
1132, |39)])[lo. To do this one has to repeat step (3) in algorithm A4.2 for each of the
hyperplanes and calculate the rescaling weight by summing over all coefficient vectors, i.e.

Uf—H _ (Z W@(])‘)Uf

We show the algorithm for the exact compression in A4.3, keeping in mind that the
extension to lossy compression is straightforward. Furthermore, note that this form of
multi-output compression is computationally less demanding than the /¢;-minimization
via equation (4).

4.3.4 Chunking Method: handling large datasets

All techniques so far require to operate on all training points at least once. For example
in matching pursuit we need to search among all points for the next dictionary element.

Algorithm A4.2 /y-MINIMIZATION

Given a kernel matrix K, w = Y, a;¢y(z;) and training points Dy = {X, Y},

1. Set v} =1,k=1

2. Repeat until convergence

2. Obtain new solution 3 to the reconstruction equation in (23) by 3 = R~1Sa.
3. Rescale Coefficients: vf ™ = |B;[vF.

4. k=k+1

SPEEDING UP KDE BY REDUCED SET SELECTION 87

Algorithm A4.3 MULTI-OUTPUT {p-MINIMIZATION

Given a kernel matrix K, p hyperplanes w? = Y, af ¢y (z), and training points Dy = {X, YV},

1. Set v} =1,k=1
2. Repeat until convergence

3. Obtain new solution 31) to the reconstruction equation in (23) by ﬁ(j) = RO g q)
for each hyperplane j =1,...,p.

3. Rescale Coefficients by the summed coefficients: vf ™ = (33, |5i(j)|)vf.
4. k=Fk+1.

Since this can be computationally expensive, we propose a cascaded approach where we
apply the proposed techniques to subsets and fuse the resulting reduced sets and possibly
repeat. The linear expansion of the solution can be grouped without changing the result,
namely:

N
wo= Y oud(x)
=1

N1 Na N
= D wdl@)+ Y b)) D> (),
i=1 i=N1+1 i=Np_1+1

n
= E wj,
=1

with w/ = ZiV:ij,l a;¢p(x);. The idea is to apply any of the previously described tech-
niques (¢1, ¢p or Matching Pursuit) to a smaller problem, keeping only a subset of the
variables active that we wish to compress, and leaving the rest fixed. We then move the
active set to another subset, and iterate through the subsets. This means that we never
face an optimization problem larger than a fixed size, of our choice. (However, if the
chunk size is set too small compression will not be easy to perform as linearly or nearly
linearly independent points may not exist in the active set.) Now, we can apply the intro-
duced techniques to the smaller expansions w’ and combine their results. Furthermore,
we can apply backfitting again to tune the final coefficients. Before we investigate all the
introduced techniques let us comment on some basic pitfalls common to all approaches so
far.

4.3.5 A common pitfall in reduced set selection

In general, a common feature of reduced set methods is the identification of construction
of a small set of examples Z = {z;}7_; C Dy and the re-parametrization of w = ZZ]\L | G
in terms of Z by > ;z;. The re-parametrization can be done analytically by the solution
of (2), namely

0= KE}ZKZ,XO‘-

However, note that for most kernels, the reduced sets obtained from an ¢y or ¢; problem
still might be almost linear dependent due to finite accuracy effects. For this reason Kz 7

88 CHAPTER 4

might be badly conditioned, or even not invertible. The common approach to invert a
regularized version of Kz 7 will lead to the problem that the regularization parameter
depends on Kz 7 and this leads to an extra expensive model selection step. Furthermore,
the standard pseudo-inverse leads to numerically unstable solutions for the expansion
coeflicients 8. For this reason we propose to choose 3 by using a conjugate gradient based
technique to minimize ||Kz 78 — Kz x| and to stop minimization by restricting the
number of iterations. In practice this is as fast as calculating the pseudoinverse but due
to ill-conditioning by far numerically much more stable.

4.4 Experiments

We conducted experiments on four types of data: (i) artificial data, (ii) two-class clas-
sification problems, (iii) multi-class classification problems and (iv) regression problems.
The summary of the datasets we use, apart from the artificial one of Section 4.4.1, are
given in Table 4.1. For each dataset we describe the machine learning algorithm that is
used for learning, along with its parameters, in Table 4.2. These are the models on which
we perform reduced set selection. The parameters selected for German, Image, Waveform
and Banana come from [70]. For USPS and Letter we tried to choose parameters which
matched the test error quoted elsewhere [28, 95]. For the regression datasets, Abalone
and Kin-32nm, we tried to pick the best possible parameters on the test set.* Apart from
the first toy dataset, in all cases we used RBF kernels. Although performing reduced set
selection on kernels that are not full rank such as polynomial kernels can result in com-
pression with exactly the same decision rule, we decided to stick to the more difficult case
of approximating a kernel with full rank.

In our experiments with hyperplane matching pursuit, we perform backfitting, and
optimize the criterion ||w — ||?. For all methods we also optimize the threshold b for the
classification tasks by explicitly minimizing the training error.

4.4.1 Artificial Problems

We first constructed artificial data by generating two classes from two Gaussian clouds
in 10 dimensions with means (1,1,1,1,1,0,0,0,0,0) and (-1,—1,-1,—1,—1,0,0,0,0,0)
and standard deviation 4 following [2]. We trained a linear SVM for differing amounts of

4RSS requires that we have given an estimator first. To this end we tried to pick the parameters as
optimal as possible on the test set.

Name Inputs Outputs Train Test
German 20 1 700 300
Waveform 21 1 1000 4000
Banana 2 1 1000 4300
Image 18 1 2000 300
USPS 256 10 7329 2000
Letter 17 26 16,000 4000
Abalone 8 1 3133 1044
Kin-32nm 32 1 3000 5192

Table 4.1: Datasets used in the experiments. All the datasets are classification problems, apart
from Abalone and Kin-32nm which are treated as regression problems.

SPEEDING UP KDE BY REDUCED SET SELECTION 89

Name Algorithm SVs Test Err
German SVM (¢ =5.24,C = 3.16) 400 0.2570

Waveform SVM (0 =3.16,C = 1) 331 0.0917
Banana SVM (¢ =0.7,C = 316) 220 0.1016
Image SVM (o = 3.9,C = 500) 216 0.0281
USPS SVM (o0 =128,C' =1000) 1526 0.0416
Letter SVM (o = 4,C = 1000) 4522 0.0373

Abalone RR (0 =15,y =1le—5) 3133 0.410
Kin-32nm RR (o = 20,7 = 0.005) 3000 0.6187

Table 4.2: Predictors used in the experiments. Included are the parameters of the initial trained
predictors we are trying to compress. The error rates for the first four datasets are averaged over
ten splits. The last two datasets, Abalone and Kin-32nm, have error rate measured using mean
squared error (after normalizing the outputs).

training points. This is an unrealistic case, as one can represent the data in primal form
by calculating w in this case, nevertheless it serves to show that SVMs do not optimally
compress in dual space. In this case, any of the reduced set selection methods (with
appropriate hyper-parameter choice) will choose 10 SVs with no loss in accuracy. The
results are given in Figure 4.1 using the {p-minimization method with v = 0. Note the
linear increase in number of SVs for SVMs in comparison to the fixed number of SVs which
is independent of training set size for reduced set methods. This is due to the fact that
all mislabeled points become SVs in the SVM, and for large datasets this has a significant
effect on computation time. Indeed the fraction of SVs in the SVM is lower bounded by
the number of training errors, and hence asymptotically by the Bayes error, as pointed
out in [87].

4.4.2 Two-class Classification

We took four different datasets and trained SVMs with the parameter choices quoted in
[70]. We then compared the error rate to compression ratio of the competing methods:
{1 — minimization, fp— minimization and hyperplane matching pursuit. For ¢;— and {y—
minimization we chose the best value of v on the data set from an array of parameter
choices for the trade-off parameter . The resulting number of SVs we used as a maxi-
mum iteration constraint for hyperplane matching pursuit. All experiments are performed
in a cross-validation setting where we used ten splits. The resulting number of SVs is av-
eraged over the ten splits since the parameter v did not result in the same number of
SVs each time. The results, shown in Table 4.2 indicate similar performance between the
methods, although hyperplane matching pursuit yields slightly lower test error for higher
compression rates.

The time needed for computing the ten parameter choices for each of the methods
is given in Table 4.3. We show this for ten parameter choices because to find a good
loss to compression ratio a hyper-parameter search is necessary. For example, one can
evaluate accuracy using a validation set. As hyperplane matching pursuit essentially gives
all parameter choices at no extra cost through a single run of greedy minimization, it
yields much faster execution times. Moreover, the hyper-parameter v in the other two
methods is difficult to control - it is difficult to know which value yields which number
of SVs. We also analyzed the training error and value of the objective function for all
three algorithms. This can be seen for the Waveform dataset in Table 4.3. We found

90 CHAPTER 4

100 ; 0.5 .
—¢ SVM —¢« SVM
= SVM + Lo—min 0.45] -© SVM + Lo—min
80F o4
w
>
@ 60r
o
]
=}
g 401
=
20f
T T T \)
: . : . 0.1 ' : . . .
%O 100 150 200 250 300 0 50 100 150 200 250 300
Training set size Training set size

Figure 4.1: Reduced Set Selection on Artificial data. The number of SVs increases linearly
for standard SVM due to margin errors becoming SVs, but is constant for RSS methods such as
fo-minimization.

that the objective function and training error were lower for hyperplane matching pursuit
particularly in the case of high compression rates, mirroring its test error performance.

Note that it is easier to compress the expansions on the problems with higher error rates
(Image, which has the smallest test error, is the hardest to compress.) This corroborates
the results found with artificial data in Section 4.4.1.

4.4.3 Multi-Class Classification

We then performed reduced set selection on multi-class problems. In this setting, one might
expect to achieve a greater gain if the reduced set selection is coupled across the different
classifiers. We tested the compression of SVM solutions using the one-against-the-rest
method [22] on two datasets: USPS Digit Recognition and the Letter database, with 10
and 26 classes respectively. We performed ¢;-minimization on SVM solutions for a range
of different values of v (the compression parameter.) The results are given in Figure 4.4.
We performed Matching Pursuit using the same number of SVs for each hyperplane as the
¢1 method to enable direct comparison. Again, although SVMs produce sparse solutions,
these can be compressed considerably by methods such as #;-minimization or the Matching
Pursuit method. The latter again outperforms the former for higher compression rates.
We show results for the ”coupled” Multi-hyperplane Matching Pursuit method which finds
SVs which are relevant to all hyperplanes (for each class) at once. The compression rate is
significantly improved. We did not compare with the algorithm given in (3) because it was
too slow to compute, however in [79] the authors do report a single run of this system with
an error rate of 5.5% for 570 SVs which they compare to 10.8% using the ¢1-minimization
approach of equation (4) which does not take into account the multi-class problem.

Dataset German Image Waveform Banana
f1-min 613 secs 152 secs 290 secs 136 secs
£p-min 645 secs 260 secs 250 secs 131 secs
M-Pursuit 21 secs 16 secs 10 secs 2 secs

Table 4.3: Calculation time of reduced set selection methods for two-class classification for ten
parameter choices.

SPEEDING UP KDE BY REDUCED SET SELECTION

91

= Ll—min
028 - Ly—min [
' —>%— Matching Pursuit
50 26é
i)
g
—0.24f
0.22f
0.2 : :
0.6 0.8 1
fraction of 409 SVs used
german
= Ll—min
- Ly—min
—*— Matching Pursuit
S
Woo.ap
0
(]
'_
0.05 ‘
0.6 0.8
fraction of 312 SVs used
waveform
Figure 4.2:

Test Error

Test Error

0.1

0.08r

o
o
>

°
o
=

o
o
N

0.08

-8 L,~min
- Ly=min

—*— Matching Pursuit ||

3 04 05 06
fraction of 218 SVs used

image

0.7 08 09

= Ll—min

- Ly—min

—*— Matching Pursuit

2 0.4 0.6 0.8 1

fraction of 219 SVs used

banana

Comparison of Reduced Set Selection Methods for Two-Class Classification. The

three reduced set selection methods perform similarly, but the Hyperplane Matching Pursuit
method yields lower test error for high compression rates on Waveform and Image.

Training Error

= Ll—min
- Ly~min

—*= Matching Pursuit

0.6 0.8 1

fraction of SVs used

-6~ L,~min
N Lo—min I
—>~ Matching Pursuit

Fraction of SVs used

Figure 4.3: Training error and objective function value on the waveform dataset. The training
error (left) and value of the objective function ||w — ||? (right) are both lower for the Hyperplane
Matching Pursuit method relative to the other two methods.

92 CHAPTER 4

We can expect these results to carry over to similar settings such as regression with
multiple outputs. Moreover, we can expect larger gains on other multi-class methods such
as one-vs-one or error correcting codes [22] which use more support vectors.

4.4.4 Regression

We performed experiments on the two datasets mentioned before in a regression setting.
We attempted to compress the solution of Ridge Regression in dual variables which does
not give sparse solutions, hence the potential gain here should be much greater than in
SVM. Our experiments indicate that this was indeed the case. We normalized both input
and outputs to have mean zero and standard deviation one, and give the mean squared
error on the normalized outputs. Figure 4.5 shows the error rate for differing compres-
sion rates using Hyperplane Matching Pursuit only. The results show that compressing
RR solutions can give significant efficiency gains, and we expect this result to hold for
other non-sparse predictors as well, such as the Nadaraya-Watson Estimator or Parzen’s
Windows [22], to name two.

4.4.5 Reduced Set Selection for Kernel PCA

As mentioned before, it is likely that kPCA is well suited for the application of reduced
set selection since the solution is expressed in terms of all data points. In this section, we
demonstrate that Multi-Output Matching Pursuit is well suited for reduced set selection
for kPCA. This is critical for KDE since its extensive usage of kPCA. In fact we will
use Multi-Output Matching Pursuit later in chapter 6 to compress kPCA to tune KDE
for a real-time robotic application. Here, we present results on a synthetic toy data set.
Our goal is to give qualitative evidence that Multi-Output Matching Pursuit can be used
for kPCA compression. Let us generate data by sampling from three Gaussian clusters
located at ¢! = [~-1,—1],¢? = [2,1],¢® = [2,—2]. We use a Gaussian kernel with o = 0.6
and apply kPCA to obtain two principal coordinates ri, % of sample z; in feature space.
Since we can not directly look at the principal directions e!,e?, we will visualize them
indirectly. This is done by considering a dense grid [—4,4]? in the input space. Let g;
denote such a grid point. We project each g; on the principal directions via evaluating
e{ é1(gi) and eg ¢1(g:). Note that these projections and generally the principal coordinates
of input points must be always smaller than one when a Gaussian kernel is used. We can
interpret each principal coordinate of a grid point as an intensity and plot the grid as an
image. A higher intensity of point g; implies that the feature point ¢(g;) is more collinear
to the principal direction. In figure 4.6 we show the obtained intensity maps where the left
column is obtained by projection on the first principal direction and the second column
is obtained by projection on the second principal direction. In the first row we show the
original solution obtained by kPCA where we plotted each input point which is used in the
expansion for kPCA. In the next row we show the projection obtained by using the subset
of points after applying Multi-Output Matching Pursuit. Note that even after keeping
only 5 % of the original data points we are able to obtain almost the same principal
directions. In figure 4.7 we show the normalized reconstruction error obtained for the
penalties v € {2710,2795 279 201 used in Multi-Output Matching Pursuit where we
plot the number of retained points vs the reconstruction error. As reconstruction error we
use the squared loss of the principal coordinates obtained by using the original principal
direction e’ and the new approximated direction é. For better visualization we normalized
the result by the maximum error (which corresponds to the sparsest expansion).

SPEEDING UP KDE BY REDUCED SET SELECTION 93

0.2p : : 0.2
= L .—norm
1
- Matching Pursuit
-6~ Multi-Output Matching Pursuit
0.15f 0.15¢
S S
Yoot Yoot
n %]
(] (]
[[
0.05 0.05¢
D
0 L L L L L L 0 L L L L
400 600 800 1000 1200 1400 1000 2000 3000 4000
Number of SVs used Number of SVs used
postal letter

Figure 4.4: Comparison of Reduced Set Selection for Multi-Class Classification. The Hyperplane
Matching Pursuit Algorithm designed for Multi-Class problems reduced the number of kernel com-
putations required on the USPS Postal Database (left) and UCI Letter Database (right) compared
to binary classification-based compression. One can see that we obtain high compression rates and
a low test error.

0.75 ‘ - - 0.8 : ‘ :
5 | ©- Matching Pursuit | [-5 Matching Pursuit
0.7f]
0.65 7 0.75f
E 0.6 §
0.5 0 g7,
8 g
0.5 =
0.45 1 0.65! ¥
0.4)
0.35 ; : ; 06 : : : : :
0 1000 2000 3000 4000 0 500 1000 1500 2000 2500 3000
Number of SVs Number of SVs
Abalone Kin-32nm

Figure 4.5: Matching Pursuit for Compression of Ridge Regression. The Hyperplane Matching
Pursuit Algorithm reduced the number of kernel computations required on the Abalone (left) and
Kin-32nm (right) problems compared to standard Ridge Regression, which is not sparse.

94 CHAPTER 4

First Principal Direction Second Principal Direction

Original (100 Points)

Retained: 10 %

Retained: 5 %

Figure 4.6: Compression of Kernel PCA. One can see that by only 5% of the original data points,
qualitatively the same feature extractors are obtained.

SPEEDING UP KDE BY REDUCED SET SELECTION 95

1T —-©—Matching Pursuit] |
0.8r
]
506
X
@
E
§ 0.4
i
0.2r
o,
0 0.1 0.2 0.3 0.4 0.5

Fraction of retained points

Figure 4.7: Compression of Kernel PCA obtained by varying the penalty term 7 used in Multi-
Output Matching Pursuit. We plot the number of kept expansion points vs reconstruction error.

4.5 Conclusion

Reduced set techniques fall into two categories: reduced set selection and reduced set
construction. Reduced set construction tries to reduce the amount of kernel points by
constructing a new set of points which are not necessarily a subset of the training data.
In contrast, reduced set selection methods try to reduce the amount of points by selecting
a linear independent subset of the training data. Often the compression factor in reduced
set selection is worse than in reduced set construction but in general reduced set selection
methods are more efficient and numerically more stable than reduced set construction tech-
niques. Another reason why we prefer reduced set selection is that it is readily available in
a typical KDE scenario where the input or output domains are possibly not differentiable.
In such a case one can only use the current dataset for compression purposes whereas
construction of new candidates is difficult.

We have reviewed and proposed optimization strategies for reduced set selection which
can be solved efficiently and are also applicable for large scale problems. Our initial goal
was to find more efficient techniques of achieving compression, and while both Hyperplane
Matching Pursuit and fy-minimization present viable novel alternatives we prefer the
former due to

(1) reduced computational complexity,
(2) the ability to compute all smaller expansions up to the described one, and
(3) its good performance at high compression rates.

In the multi-output case, significant gains can be made in terms of compression by coupling
the compression of all trained hyperplanes at once. This led to high compression levels
in the USPS and Letter datasets and in kPCA which is crucial for time-critical usage of
KDE. Furthermore, this result suggests that one could also gain significant speedups in the
training phase by simultaneously training several classificators. The most straightforward
way of achieving such a goal would be to adapt the kernel matching pursuit algorithm for
direct multi-class classification. This is a topic of future research.

Part 11

Applications to robotics

97

Chapter 5

The problem of robot imitation —
Optimization based Approach

Imitation learning is a promising technique for teaching robots complex movement se-
quences. One key problem in this area is the transfer of perceived movement characteristics
from perception to action. For the solution of this problem representations are required that
are suitable for the analysis and the synthesis of complex action sequences. In this chapter
we describe the method of Hierarchical Spatio-temporal Morphable Models for a represen-
tation of complex movement sequences. This method allows an automatic segmentation
of movements sequences into movement primitives, and a modeling of these primitives by
morphing between a set of prototypical trajectories. We apply this method to imitation
learning and to the synthesis of human writing movements. The synthesized movements
are subsequently transferred to a human-like robot arm.

5.1 Introduction

The goal of imitation learning is to teach robots movement sequences by observation of a
teacher. Imitation learning has to address two fundamental problems.

1 The movement characteristics of observed movements have to be transferred from
the perceptual level to the level of generated actions (see [77] and [59]).

2 Continuous spaces of movements with variable styles, i.e. different movement per-
formances belonging to the same class, have to be approximated based on a limited
number of learned example sequences.

This implies that the robot should be able to synthesize new movements based on
the learned examples.

One method that fulfills these requirements is the technique of Spatio-Temporal Mor-
phable Models (STMMSs). This methods represents the spatio-temporal characteristics of
complex movement sequences by linear combinations of example trajectories with different
characteristics. Linear combinations of space-time patterns can be defined efficiently by
exploiting spatio-temporal correspondence, by weighted summation of spatial and tempo-
ral displacement fields that morph the prototypical movement trajectories into a reference
pattern. This method has been successfully applied by [11] and [32] for the generation
and analysis of complex movements in computer graphics as well as for the recognition of
movements and movement styles from trajectories in computer vision by [32, 40].

100 CHAPTER 5

To generalize the method of linear combination for complex sequences containing mul-
tiple complex movements we have extended the basic STMM algorithm by introducing a
second hierarchy level that represents motion primitives. Each movement primitive is mod-
eled using a STMM. In this way generative models for complex sequences of movements
with variable styles can be learned from example trajectories. This method of hierarchi-
cal STMMs (HSTMMs) has been successfully applied for the automatic recognition and
synthesis of sequences of complex karate techniques by [40], and for the estimation of skill
levels of different actors by [41] using a small amount of motion capture data. This shows
that STMM is suitable for building models for continuous movement spaces from small
amount of training data that can be used for analysis and synthesis.

In this chapter we present an application of this algorithm for the Imitation Learning
in robots. We show how HSTMMSs can be linked with a robot control architecture. We
illustrate our method by imitating human-like writing movements using a robot arm.
Based on a small number of prototypical examples our robot can learn to imitate and
caricature writing styles, and to synthesize similar styles of writing movements.

5.1.1 Related Work

Our work includes the identification and the segmentation of movement primitives, and
the low-dimensional representation of movements by interpolation. Multiple methods
for the parameterization of movement styles have been proposed in computer graphics
and computer vision, e.g. based on Hidden Markov Models by [7] and [100], principal
component analysis by [102],[5] and [10], or Fourier components as in [94]. Different
studies on imitation learning have investigated methods for describing the spatio-temporal
characteristics of movements using Principal Component Analysis by [25] and Spatio-
temporal Isomaps by [43]. In [71] a verb-adverb approach was proposed that applies a
combination of radial basis functions and low-order polynomials for defining parameterized
interpolations between example movements. For this approach specific key times (e.g. the
foot contact with the ground) must be specified by hand. Time Warping is defined by
linear interpolation between these key times. In [93] and [63] this interpolation is realized
with splines.

For the identification and segmentation of movement primitives within longer move-
ment sequences appropriate features are required, that provide a robust characterization
of individual movement elements. Different elementary spatio-temporal and kinematic
features have been proposed in the literature, like angle velocity as was proposed in [65],
or curvature and torsion of the 3D trajectories as in [14].

5.2 Hierarchical Spatio-temporal Morphable Models as rep-
resentation for Imitation Learning

An overview of the algorithm is shown in figure 5.1. The following sections describe
the extraction of the movement elements, the modeling by STMMSs, and the transfer of
synthesized movement sequences onto the robot arm.

For the identification of movement primitives within a complex movement sequence an
appropriate description of the spatio-temporal characteristics of the individual movement
elements must be found that are suitable for a robust matching with stored example
templates. We utilize an algorithm which uses dynamic programming to find the movement
primitives. A formal description of the algorithm is given in [40].

THE PROBLEM OF ROBOT IMITATION — OPTIMIZATION BASED APPROACH 101

®1,®2,...,0p
Motion Movement Movement coefficients of
Capture Sequence Primitives linear combination

¢ Identificaion v STMM v

— Movement — Linear — Concatenation——
primitives combination
Task Posture Mapping
Execution ¥ Initialization <+ Coordinate <*—

Systems

Figure 5.1: Schematic description of the algorithm to synthesize and imitate complex movement
sequences. In the first step the sequence is decomposed into movement primitives. These move-
ment primitives can be analyzed and changed in style by defining linear combinations of prototypes
with different linear weight combinations. Afterward the individual movement primitives are con-
catenated into longer movement sequences. This technique allows to generate sequences containing
movements with multiple styles. The mapping of these movement sequences onto the robot arm
is done in three steps: mapping of coordinates, posture initialization, and task execution.

5.2.1 Morphable Models for modeling movement primitives

The technique of spatio-temporal morphable models (see [31, 32]) is based on linearly com-
bining the movement trajectories of prototypical motion patterns in space-time. Linear
combinations of movement patterns are defined on the basis of spatio-temporal corre-
spondences that are computed by dynamic programming. Complex movement patterns
can be characterized by trajectories of feature points. The trajectories of the prototyp-
ical movement pattern p can be characterized by the time-dependent vector ¢,(t). The
correspondence field between two trajectories ¢; and {5 is defined by the spatial shifts
&(t) and the temporal shifts 7(¢) that transform the first trajectory into the second. The
transformation is specified mathematically by the equation:

Cat) = Gt +7()) +&(1) (1)

By linear combination of spatial and temporal shifts the spatio-temporal morphable model
allows to interpolate smoothly between motion patterns with significantly different spatial
structure, but also between patterns that differ with respect to their timing.

The correspondence shifts &€(t) and 7(t) are calculated by solving an optimization
problem that minimizes the spatial and temporal shifts under the constraint that the
temporal shifts define a new time variable that is always monotonically increasing (fig.
5.2). For further details about the underlying algorithm we refer to [31] and [32].

Signifying the spatial and temporal shifts between prototype p and the reference pat-
tern by &,(t) and 7,(t), linearly combined spatial and temporal shifts can be defined by
the two equations:

102 CHAPTER 5

P P
() =D wp&,(t) T(t) =) wyp(t) (2)
p=1 p=1

The weights w, define the contributions of the individual prototypes to the linear
combination. We always assume convex combinations with 0 < w, < 1 and Zp wp = 1.
After linearly combining the spatial and temporal shifts the trajectories of the morphed
pattern can be recovered by morphing the reference pattern in space time using the spatial
and temporal shifts £(¢) and 7(¢). The space-time morph is defined by equation (1) where
¢ is the reference pattern and ¢, has to be identified with trajectory of the linearly
combined pattern.

+ X Prototype

Reference
Sequence

time

Figure 5.2: Illustration of the established spatio-temporal correspondence between a pro-
totypical trajectory and a test sequence with the correspondence vector fields 7 and &.

5.2.2 Concatenation

The synthesized movement elements were concatenated using an algorithm described in
[33]. The trajectory of each movement element is decomposed into a “normalized” tra-
jectory and its start and endpoint. The normalized trajectory is zero at the transition
points between the elements. Start points, end points, and the normalized trajectories are
linearly combined separately.

5.3 Transferring human-like movements to a robot arm

The transfer of the trajectories to the robot is performed in three stages:

1) The HSTMM synthesizes trajectories in the same space as the prototype trajectories.
Therefore, one has to transform synthesized trajectories from the prototype space
into the task space of the robot. Also the trajectory is scaled appropriately.

THE PROBLEM OF ROBOT IMITATION — OPTIMIZATION BASED APPROACH 103

2) The second stage initializes the robot posture to a specific recorded (and appropri-
ately transformed) initial human arm posture.

3) The task execution is performed by reproducing the exact end-effector trajectory
and approximating the human arm posture.

5.3.1 Mapping of the coordinate systems

In the investigated task of writing movements the end effect trajectories are approximately
planar. The drawing area of the synthesized writing movements has to be transformed
into a drawing area in task space. The drawing plane is given! by two vectors u and v,
which define a task orientation frame

T,=[u v uxv]. (3)

The starting point of the movement is given by the position vector p. . Since the task
space is planar, we can use the first principal components eq, es of the HSTMM output
sequence ((t), to define an orientation frame of the trajectory as

Td:[e1 €y €] X ey] (4)

Note that e, ey span the whole task space for our application. The trajectory ((t) is
then first centered

N
A 1
C(t) = Clt) — > (), (5)
k=1
where we assume that the trajectory is given in a discretized form ¢ (t1),...,C(tn) with
t; = 0. The centered trajectory ((¢;) can be scaled to avoid violation of task space

constraints. The final target trajectory ¢*(¢) is given by
¢ =p+ T () - C0)). (6)

5.3.2 Initialization of robot posture

The kinematic structure of humans and robots are usually different. Therefore, marker
positions can usually not be transferred to the robot directly. Only if the robot is humanoid
and has an equivalent kinematic structure the marker positions can be transferred directly,
see [69]. Otherwise one has to define ”posture specifiers” that are applicable to humans as
well as to robots. Imitation of posture is achieved by transferring these posture specifiers

from the human to the robot.

Let Lg, Rg, Eq and F; denote left shoulder, right shoulder, elbow and finger marker in
transformed prototype space. As posture specifiers we chose orientation normals of two
planes. The normal vector of the first plane is defined as

o (La= ¢ (1) X (By = ¢*(11))
T @a = ¢ (0) x (Ba — (@)

This plane is spanned by the left shoulder, the elbow and an arbitrary reference point.
In our case we chose the starting point (*(¢1) of the trajectory (*(t). Equivalently let

(R —¢*(t)) x (Fa —¢*(t))
| (Ra —¢*(t1)) x (Fa —¢*(t)) ||

!The plane could be determined by a stereo vision system.

(7)

fq

(8)

104 CHAPTER 5

be the normal of the second plane which is spanned by finger, right shoulder and {*(¢1).
Let q = [q1, q2] be the joint values of the robot, where q; influence the elbow position and
q2 does not. The corresponding plane normals e, (q1), f,(q2) of the robot are calculated
in an equivalent way (see fig. 5.3). For this purpose we use the a-priori specified position
vector p from 5.3.1 instead of (*(¢1)%. In addition a left virtual shoulder position has to
be specified to determine the relative orientation of robot arm to the robot basis.
The initial posture of the robot is adjusted to the initial human posture by first mini-
mizing
min leq —er(qu)]- (9)

over the joints q; and subsequently minimizing

min [y —f(q2) (10)
q2

over q2. We minimize therefore the angles between e,, e; and f,., f; respectively.

5.3.3 Task Execution

Starting from its initial posture, the trajectory of the robot is planned by solving the
following optimization problem that depends on the discretely sampled joint variables
q(ts) :

rr(ligp(Q(ti)) = llea — e, ||* + alla(ts) — alti-1)|?

" subject to P(a(t:)) — C*(t:) = 0

where P, (q(t;)) describes the end-effector position. This is done for each time step t; of
the trajectory separately. The objective function p(q(t;)) measures the Euclidean distance
between the normals e; and e,. An additional regularization term is added to penalize high
joint velocities. This term depends on the difference between the new joint configuration
q(t;) and the previous configuration q(¢;—1). The scalar a determines the trade-off between
smoothness of obtained joint trajectories and the quality of imitation. As a starting point,
we use the joint values obtained by classical inverse kinematics. The joint trajectories
were computed off-line. 3

5.4 Experiments

We demonstrate the application of the proposed method by imitation and synthesis of
human writing movements. In the following we describe the technical details and results
of the performed experiments.

Motion Capture: We recorded writing movements of two human actors who wrote
the the word “ICAR” (fig. 5.4) using a commercial motion capture system (VICON 612,
Oxford) with 6 cameras. We used 10 (passive) markers that included the shoulders, 2 front
and one rear torso, upper arm, elbow, front arm, hand and index finger of the writing arm.

2The reference point ¢(t1) has to ensure that eq # f4Vt. If it does not, another reference point has to
be chosen.

3 A computational faster implementation to solve (5.3.3) is obtained by using explicit information about
the null space of the manipulator Jacobian (see [82]).

THE PROBLEM OF ROBOT IMITATION — OPTIMIZATION BASED APPROACH 105

Figure 5.3: Tllustration of the plane normals e, and f,.. A virtual left shoulder L, position of the
robot is defined a-priori.

Syntheses of writing movements: Continuous spaces of individual movements are
generated by linear combinations of the segmented movement primitives. These move-
ments are then automatically concatenated into longer sequences including multiple move-

106 CHAPTER 5

Right
ShI Left
</ \Shoulder
r =

*Ellbow

Figure 5.4: Left: Motion capturing of writing movements on a board. Right: Illustration of the
marker set and the trace of the finger marker during the writing of the word "ICAR”.

ment primitives. Figure 5.5 shows the synthesized pen trajectories of the writing move-
ments. The method allows to morph continuously between the writing sequences of the
two actors (left panel). In addition we can synthesize caricatures of the specific writing
styles of each actor (right panel). Also, the individual movement primitives can be re-
assembled in a different sequential order, e.g. in order to write the word ”’TACR” (middle
row). All movement sequences were synthesized based on only two prototypical example
trajectories.

Z(;\:)g()) Z(mm)
: — : : 1000 :
Original A

600+ 1 s00r

ol 3 ol Morph
>
(%]
-200 m { ool m Original B
-400 | 1 400t
00l W | ol m EXB
I . . _Original B . ‘ ‘ . ‘ ‘
®%0 0 100 200 300 400 500 600 700 0 200 400 600 800
X(mm) X(mm)

Figure 5.5: Left panel: Recorded pen trajectories and synthesized movements. The morphs inter-
polate continuously in space-time between the prototypes. Right panel: Original pen trajectories
and exaggerations of the writing styles of the two actors. The middle row shows synthesis of a new
word "TACR” by reassembling the movement primitives in a different sequential order.

Transfer to the Robot arm: The synthesized movements were executed using a Mit-
subishi PA-10 7-DOF robot arm (fig. 5.6). Optimization has been performed for different
values of « (see section. 5.3.3). Figure 5.6 illustrates that for small values of o a bet-
ter imitation (measured by the difference |eq — eq4]|) is achieved but discontinuous joint
trajectories can arise. These discontinuities disappear for large values of « at the cost of
worse imitation quality.

THE PROBLEM OF ROBOT IMITATION — OPTIMIZATION BASED APPROACH 107

Smoothness of trajectory

10
— >
N 107 L E
8 X < E
B : -
< 10" .. . - . 3
= E < %0 x o 3
8§ o P T e g
) E P 3

101 L L L L L

o 100 200 . 300 . 400 500 600
Discrete time
oo Quality of imitation

X

>¢ >
= =< B3 > < <
=
) > o S >SS =
¥ S e L

| %
) 100 200 400 500 600

%
!

;éX
%

. 300 i
Discrete time

Figure 5.6: Top-Left: The Mitsubishi PA-10 robot arm used to execute the writing movements.
Top-Right: Writing examples of the Originals A and B and the average morph in between (compare
fig. 5.5). Bottom: Joint velocities ||q(t;) — q(t;—1)|| as a function of time. For a = 10~ (dots)
and o = 1072 (crosses). One obtains continuous joint trajectories for larger a.

5.5 Should a robot imitate?

In this section we investigate the effect of imitating a human posture on various dexter-
ity measures. Dexterity measures assess the quality of a posture with regards to specific
aspects such as flexibility, safety and energy consumption. We analyze the differences be-
tween imitated trajectories and trajectories generated by a standard controller as delivered
by the manufacturer and discuss the effect of imitating movements from the engineering
viewpoint.

Joint Limits The distance from mechanical joint limits g¢;, . .¢i,,.., can be defined by
the vector

€ = A—l(‘J1—7)7--~A—7(Q7—7) ; (11)

108 CHAPTER 5

where A; = ¢i,... — i,..,- In general, the bigger the distance from a mechanical joint
limit, the more agile is the robot. Figure 5.7 shows the overall distances from mechanical
joint limits for trajectories generated by imitation. One can see that the robot controller
typically uses joint values closer to the limits. This seems to be surprising at first sight.
However, it is likely to be a task-specific phenomenon since humans and robots use quite
completely different control policies.

2.6

241 -
) W)
_ 2 b
T
@
8 18} R
S
ho
o
£ 16} 4
E 2 X 2
S X % %
3 * x
L 3 IR i
R, N N AS
x
120 * x J
! x
1F % 1
x
¥
0.8 1 1 1 1 1
0 100 200 300 400 500 600

Discrete Time

Figure 5.7: The overall distance of joint trajectories for imitating (lower curve) and standard
trajectories (upper curve). The standard controller generates joint trajectories which are closer to
the joint limits.

Distance from Singularity For any robot one can relate the joint values q(¢;) with
the Cartesian task coordinates of the final tool tip via the so called forward kinematics
map:

C(t:) = Pr(a(ts)). (12)
Taking the derivative of (12) with respect to ¢; yields:
{(t:) = I(a(t:))a(ts), (13)

where the Jacobian J relates joint velocities to robot velocities in the task space. As
proposed in [103] and [51], the distance from a singularity, i.e. a configuration where
the robot looses at least one degree of freedom, can be characterized by the minimum
singular value o, of the Jacobian matrix J. The trajectory of the minimum singular
value for both trajectories is shown in figure 5.8. One can see from figure 5.8 that the
standard controller generates trajectories which are more stable and never causing critical
movements. In contrast, this frequently happens for the imitated trajectories.

Manipulability Although a robot does not loose any degree of freedom it might be
strongly constrained in the possible movements it is allowed to do. A measure for manip-
ulability was introduced in [75] and consists of the quotient between largest and smallest
singular value of the Jacobian matrix, i.e.: ¢y = ZZ‘Z In figure 5.9 we show the condition
number for both trajectories evaluated at each time point ¢;. Note that the trajectory of

THE PROBLEM OF ROBOT IMITATION — OPTIMIZATION BASED APPROACH 109

1.4 =
X
2
g %
x
120 X 9 i
% X% x X
x
1 * x
- x X x X
£ }
S x
o x x
S 08| X x X 4
z MX x
5 x
= o X X x o xo Xk
2 X x % .
>
@ X T .
e 06F x " x N
5] x x
£ X f(’g
£ % %
0.4 R % 3 s s -
2 e S 4
x %x X %%(
b %
Xx XX EX X
% %o x Nk XX
0.2 X K xE x x x 7
x X oxg XX % 0
R B
O 1 1 1 1 1

0] 100 200 300 400 500 600
Discrete Time

Figure 5.8: Minimum singular values o,,;, for trajectory generated by standard controller (dark)
and imitated robot trajectory(light)

the standard controller is almost constant across the whole movement, whereas the imi-
tated trajectory leads to a strong change of the manipulability measure. Is is reasonable
to assume that the robot controller has some form of minimum manipulability constraint
which is considered during the whole motion. Since the robot has a redundant degree
of freedom, this redundant degree of freedom might be used to keep the manipulability
constant. However, the trajectory generated by imitation is using this degree of freedom
for imitation. Thus the only way to increase the manipulability during imitation would
be a make a trade-off between imitation and manipulability.

10°
%
2
L
x x%x‘?%
5 %
10°F &R B
x X % X
o’ & g %&
3 X %X Xx X X x
2 R LL
=1 X% X X
Z % X x ox XX x
IS xoxo Xx
S o el .
g —
O x
3 & X % N
10 X x X
x
TN
*
10% ! ! ! ! !
0 100 200 300 400 500 600

Discrete Time

Figure 5.9: Ratio between maximum and minimum singular values of the Jacobian matrix for
trajectories generated by the standard controller (dark) and imitated robot trajectory(light)

110 CHAPTER 5

Kinetic Energy According to [84] the kinetic energy K of a manipulator can be ex-
pressed as

1
K = 5VTD(ti)v, (14)

where D(t;) is the inertia matrix depending on the actual posture and v = q. Since D
is always positive definite K increases with ||v||. The higher the overall joint velocity the
higher is the kinetic energy of the manipulator, which leads to higher motor torques and
therefore higher energy consumption. We show the joint velocities of both trajectories in
figure 5.10. Note the similarities between both curves. Assume that we perform a small
movement in Cartesian space ¢. Using the Jacobian we obtain for the implied velocity
dq the relation
dq=J1o¢.

Now, the link is not so surprising since we see that if a trajectory passes nearby a singularity
the Jacobian gets worse conditioned and therefore a small movement in Cartesian space
has to lead to large joint velocities and therefore also to higher kinetic energy.

10°

x
-1 X
107 = L
X Xx
x
- - J
= % XX %
= x
= X x
o X
8 x
E x &
z X x E
2 < K K
s %
S
=

1
0] 100 200 300 400 500 600
Discrete Time

Figure 5.10: Norm of joint velocity vector v generated by standard controller (dark) and imitating
robot trajectory(light).

5.6 Conclusion

We have presented a method for imitation learning of complex movement trajectories that
is based on linear combination of small sets of prototypical example movement sequences.
The proposed algorithm decomposes long trajectories automatically into movement prim-
itives, and models these primitives by linear combination of prototypical trajectories. We
also have shown how such flexible representations of movement trajectories can be coupled
with a real robot system in a way that ensures the accurate reproduction of endpoint tra-
jectories and the imitation of the style of the human movement. The proposed method for
transferring the synthesized trajectories to the robot has the advantage that it combines
an exact control of the end-effector position with a ”softer” posture control that charac-
terize the style of the executed arm movements. Since the current formulation aims at

THE PROBLEM OF ROBOT IMITATION — OPTIMIZATION BASED APPROACH 111

exact task execution and soft imitation, the task transfer is an exact optimization problem
since no compromise on the accuracy in task execution is desired. This prohibits the use
of a learning scheme for this task.

We also discussed the properties of the robot imitating trajectories from a dexterity
analysis point of view. We found that trajectories performed by humans are not necessar-
ily the best trajectories to achieve a task for a robot. For example, trajectories obtained
by a standard controller will use the degree of freedom in the arm to increase manip-
ulability and try to decrease kinetic energy of the arm. In contrast, ensuring accurate
reproduction of endpoint trajectories, the imitation of the style of the human movement
will explore this degree of freedom to imitate and generate trajectories which are therefore
suboptimal in the robotic sense. An interesting fact is that humans take advantage of
posture singularities while robots do not. For example, during a lifting process, humans
use the mechanical limit of the joints to block their own motion and thus increase their
arm stiffness.

In summary, we conclude that a robot controller which imitates humans has to find
a suitable trade-off between accuracy of imitation and penalizing postures that are near
singularities. This trade-off could done for example by adding penalty terms to the op-
timization procedure. Our approach to imitation is purely optimization-based. Thus, a
crucial assumption is that we know the trajectory to be imitated precisely. However, since
we now have seen that perfect imitation may not be desirable anyway, we will investigate
ways to relax the assumption of perfect environmental knowledge in the next chapter.

Chapter 6

Robot Imitation — A Learning
based Approach

In chapter 5 we have discussed the problem of transferring perceived movement charac-
teristics to a robot arm. In particular, we found out that this approach suffers from the
following disadvantages:

e The robot imitates the human actor after performing a computational expensive
optimization. As formulated in chapter 5, imitation is a very time consuming and
therefore inconvenient teach-in mechanism.

e Imitation works only under ideal conditions: movement characteristics were required
to be given by a complete set of 3D world coordinates.

e Imitation of posture is a suboptimal control policy when performed for each single
point of the trajectory.

In contrast, in this chapter we propose a learning-based approach to imitation: Given a
picture of a human actor as input, what is the corresponding robot posture? Therefore,

e we tackle the imitation problem when perception is not god-like: We do not need
any 3D coordinates.

e we only want to generate control points of a trajectory. Thus the robot can use a
different control policy for trajectory interpolation.

e imitation is formulated as an estimation task which requires predictions only dur-
ing imitation. It will turn out that this can be done more efficiently than in the
optimization-based approach.

Our approach requires us to solve the problem of pose recognition and simultaneously
the problem of estimating the output robot posture from a given set of image features.
For the solution of these problems we will mainly use ideas from Kernel Dependency
Estimation. For the KDE map we use image features encoding the pose of the human actor
as inputs and the corresponding robot posture as desired output (see figure 6.1). Note that
this is not a standard regression problem, since there exist a non-linear dependence of the
outputs due to the kinematics of the robot arm. Of course, by using unreliable information
about the imitated trajectories we have to sacrifice precision. Thus we cannot test the new
approach in the the same task as in chapter 5. We discuss in section 6.1 problems involved
in estimation of human posture given an image Z with a human actor. Note that since

114 CHAPTER 6

N Fi

o)) T l Pre-Image

Imitation

Figure 6.1: KDE for robot imitation.

our ultimate goal is to estimate the robot posture given an input image we do not need to
estimate any kinematic model of a human as intermediate step. Posing the whole problem
as a single inference problem allows us to circumvent the usage of additional models.
Finally, note that a valid robot joint posture has to obey the constraints of kinematic and
dynamic feasibility. Therefore, we discuss the inference problem of robot joint variables
given a set of input features under these additional constraints in section 6.2.2. We will
encode the additional kinematic constraints as constraints for the pre-image problem in
KDE. Let us start in the next section with the first problem: Pose Estimation.

6.1 Estimation of Human Pose

Human pose estimation has received a considerable interest in the last decade due its
importance for man-machine interaction. Existing algorithms found in the literature can
be categorized into two categories:

- Model-based algorithms which formulate the pose estimation as estimation problem
of parameters of an a-priori defined articulated structure which is observed in the
image.

- Template-based algorithms which extract a set of possible elementary image features
(as landmarks and corner/color histogram) from an image and then try to find most
the likely posture by matching features of a template.

Algorithms based on an a priori defined kinematic model of a human body usually aim
at solving an incremental tracking problem. Such algorithms try to estimate the current
state of the kinematic model parameters given the image as observation and the current
state of the kinematic model. For an implementation of such systems consider e.g. [27],
[9] and [8]. Since we are not interested in a kinematic model of a human, we do not
consider model based approaches, but merely focus in the following on the template based
approach. Furthermore, note that our aim is to use a single image source only. Thus we
do not consider approaches using multiple views to resolve ambiguities or to estimate 3D
information directly from the image such as in [62] or [30].

We start with an approach based on contours introduced by [47] and which was used
for pose estimation in [1]. The contour-based approach is particular interesting since it
creates features which encode global properties of the pose. Unfortunately, contour-based

RoOBOT IMITATION — LEARNING BASED APPROACH 115

approaches are sensitive to arm-body self-occlusion (see discussion below). To this end,
we investigate an alternative approach based on skin-color which uses color information
to determine arm,hand and head position. While color is not sensitive to self-occlusion
it is a source of trouble on its own since it depends on the lighting condition and texture
information which both can vary dramatically. Finally, in our approach, we investigate a
combination of both approaches by fusing cues from global shape with color information.

6.1.1 Contour descriptors

The basic assumption of contour descriptors is that the information of the object of interest
can be represented by a planar and possibly closed curve. Consider the contours of human
poses shown in figure 6.2. As a human observer, just looking at the contour is sufficient to
estimate the pose of the human. Therefore, the contour is a rich descriptor which could be
used to measure pose. Thus we look for features which would allow a machine to measure

Figure 6.2: The contour of an object can be sufficient to determine its pose.

similarities between contours and thus to estimate pose by applying a learning algorithm
based on such a similarity measure. To this end, one has to first extract contours from an
image and then solve the problem of finding a representation of the contour which allows
to define some sort of distance measure on contours. Let us discuss in the following how
to extract contours first.

A contour is intuitively a curve which delimits and thus is the boundary line of different
image regions. For example, given a segmented image, the contour of an object can be
the delimiter to the background. In a color image the regions of similar color can be a
separated by a contour. In general the points which belong to a contour are edges in an
image and thus we will use standard edge extraction algorithms to calculate the edge map
J, where J is of the same size as the original image 7 and where

1 if edge found at Z(z,y)
0 otherwise

J(w,y)Z{

Such edge maps can be obtained by calculating the image gradient. This operation can
be efficiently implemented using a linear convolution of the image with a so-called Sobel
filter(see [68] for details). For example the contours in figure 6.2 are obtained by this
procedure. In general, before convolving the image with a Sobel filter it is useful to
smooth the image to remove any possible spurious edges. Such smoothing can also be
realized by an efficient convolution operation. After obtaining the edge map 7 one has to
choose a parametrization of the contour which ideally has the following properties:

116 CHAPTER 6

- Scale invariance: the pose is not dependent on the distance of the human in the
image.

- Translation invariance: the pose is not dependent on the relative position of the
human to the robot.

- Continuity: Small change in pose should result in a small change of the features.

Obviously, we cannot use the edge map J directly as a representation since it does not have
any of the 3 properties above. Therefore, we have to consider an alternative representation
which have the desired properties. In this thesis we will consider Shape-Contexts.

Shape-Context The parametric form of the contour allows us to compare two contours
via their Ly distance. However, if our main interest is just comparing contours and not
visualizion we can pursue a different approach. In [3] it was proposed to use shape-context
descriptors which are local radial histograms located at points on the edge map and which
are calculated over local neighborhoods. Such shape-contexts were used in [64] for human
pose estimation and in [1] for contour-based tracking of human pose. Let us review the
shape context approach in more detail. We start again with the edge map J obtained by
applying a standard edge detector to the segmented image Z. Now, the next step is to
select r points from the edge map J which are likely to be part of the contour. To this
end, given all pixel coordinates F := {(i,7)} of pixels where [J(i,j) = 1, so called edgels,
we construct the convex hull C(F) of all edgels and randomly select r edgels which are
close to the convex hull to select a subset of all edgels to keep processing requirements
low. Let the selected subset of edgels be denoted as E C E. Given this r edgels we can
calculate the r? pixel distances among each edgel e;, ej

Dij = |lei — €5,

and the mean distance mp via
1 T
mp = ") E Dija
re /=
Z7J

which allows us now to rescale all selected edges in E and thus leads to removing the scale
information. In the next step we select an edgel e; in £ and use it to center all other
edgels in £\ {e;}. The new set of centered edgels are now used to calculate the log polar
histogram at this particular edgel e;. To this end, we first introduce the two normals w;
and wo which define two lines which cross at zero and which have a phase difference of
0¢. Rotating w; and wg allows us to define a one-dimensional histogram h(f) over the
rotating angle 0 via

hi(0) = #{ejlws e; < 0 and wy e; > 0} with e; € E\ {e;}.

We can extend this one-dimensional histogram by introducing distance levels which intro-
duce further bins and which aim to count the number of edgels which are at a particular
distance from the central edgel. To emphasize the vicinity, the distance levels are uniform
at log scale which implies that there are more bins in the vicinity of the center edgel e;.
Thus our final radial log polar histogram looks like

hi(0,k) = #{ejlwy e; < 0 and w{ e; > 0 and dy < [le;—ej|[> < dpr1} with ej € E\{e;},

where dj, is a sequence of thresholds which are required to be equidistant on log scale (for
example dp = exp(yk) with v > 0). Note that the two-dimensional histogram can be

RoOBOT IMITATION — LEARNING BASED APPROACH 117

represented as a matrix H;. In figure 6.3 we visualize the radial log polar histogram where
we have used 0¢ = ¢/5 and § = (0,7/5,...,27) as binning values. The above procedure is
repeated for r edgels and yields a set of shape descriptors S = {(e1, H1),..., (e, H;)}. In
[3] it is argued that this set of shape-contexts is a rich descriptor and preserves the exact
shape information as long the bins are fine enough.

In this thesis we will construct features based on shape-contexts that will serve us as
input features for the regression algorithm to estimate the output pose. However, since
contours are usually not robust and are sensitive to self-occlusion, we describe in the
following a color-based approach. Color will serve us as an additional input cue and we
aim at combining both types of features for human pose estimation. The motivation for
combining features is that each of the single features might be too less discriminative and
thus using a richer set on features should yield more discriminative power

6.1.2 Skin-Color based pose estimators

The motivation to use the color of skin as feature for human pose estimation is based on
a number of facts related to skin color. First, obviously color processing is very efficient
since only three numbers (red, green and blue intensity — RGB) are involved. Therefore
we do not need to perform any convolution operations as in the contour-based approach.
Second, assuming arms and faces can be observed unclothed, the regions of skin color are
a strong indicator of the human pose. Most approaches try to model the variety of skin
colors using a probabilistic model obtained from example images containing skin color.
Let us denote the RGB color value at pixel (i,j) by rgb(i, 7). The probability of a color
value rgb(z) at pixel coordinate x = (7, j) being skin is then

Pskin(18b(2)[7),

which can be given by e.g. a single Gaussian in the three-dimensional RGB space. Here, n
indicates the necessary parameters. In the case of a Gaussian it would consist of the mean
and the covariance. In this thesis, we use a single Gaussian distribution function to model
the distribution of skin color values. Thus in our case pgki, is a multivariate Gaussian in
a three-dimensional space. We determine the parameters n of our Gaussian distribution
function by collecting a set of camera images and choosing manually pixels which belong
to skin. Afterwords, we calculate the mean RGB color value and the covariance of all

Figure 6.3: Anatomy of radial log polar histograms. See text for description.

118 CHAPTER 6

collected color values. A more sophisticated approach is implemented in [45] which used
a mixture of Gaussian to model the probability pei,. In this case 1 defines a whole set of
mean vectors and covariance matrices.

We can now use the probability function pg, to calculate the skin color probability
of each pixel in a new image to obtain a new image S where each pixel given by

S(i,J) = Pskin (rgb(i, 5)[n).

Thus the brightness of each pixel in (i, j) indicates the probability of this pixel to belong
to skin. We will denote S as the skin map. After obtaining the skin map, we need useful
features for extracting the pose. Assume that the image is segmented and we only evaluate
the probability on pixels belonging to the human actor in a bounding box indicating the
region of interest. Then, we can calculate two histograms h,(j), hy(i) which, given a
threshold value o, encode the distribution of skin colors in the bounding box via

hx(]) = #{i’pskin(rgb(i7j)|n) > U},
hy (i) = #{J|pskin (rgb (i, j)|n) > o'}

Concatenating these two histograms to a single feature vector gives a simple representation
of the distribution of skin and thus the human pose. In general, it is beneficial to smooth
the image before calculating the skin map and the histograms. Furthermore, one can
perform a dilation operation optionally to get connected areas in the skin map [68]. In
figure 6.4 we show the evolution of the histograms h, and h, while a human actor waves
his right arm.

6.1.3 Combining color and shape cues

We combine shape and color features to build a single feature vector that contains sufficient
information about the posture. Let us introduce the two feature spaces Fg, Fo where Fg
is the feature space constructed from the shape descriptors and F¢ is the feature space
constructed using color histograms h, and h,. Thus we consider the feature vector & =
[A(S(Z), d([ha(T), hy(T)])] € Fs x Fc where S(I) is a shape descriptor and hy(Z), hy(Z)
are the concatenated color histograms of image Z. A dot product, and thus a kernel ks_.
between two such feature vectors obtained from two images Z7,Zs could be implemented
by the sum of two kernel functions

kol D) =2y = o(S(T1) ¢(S(Z2)) + d([ha(T1), hy(T1)]) T ([(o), hy (T2)]X1)
=: ks(Il,Iz) + kC(Il,IQ). (2)

Here, the kernel function kg is a similarity measure between the shape descriptors of
images 71 and Zy. Analogously k¢ is a similarity measure between the color histograms
of 7; and Zy. Let us start with the description of the color histogram kernel kc(Z,Z2).
In [36], kernels between probability distributions are discussed. They argued not to use a
linear kernel function to compare histograms since a linear kernel, i.e. the euclidian dot
product, does not consider special properties of histograms as binning or quantization. As
alernative they discussed several kernel functions which are expected to outperform linear
kernels on histograms. In our work we use their ”total variation” kernel k., since it is
almost as efficient to calculate as the linear kernel function. The total variation kernel is
given by

N
ko1 (p,) = Z min(pi, ¢i),
i=1

RoOBOT IMITATION — LEARNING BASED APPROACH 119

| ||
| ||

i
i
i
L
B
e
i
e
I

Rl

Figure 6.4: Skin Color based features of human pose. Column 1: Camera Image; 2: Skin Map S;
3: Histogram of row response h;(j); 4: Histogram of column response h,, ().

for p, g being histograms with N bins. Since our kernel k¢ is the similarity between a pair
of histograms we use the total-variation kernel for each row and column histogram, i.e. h,
and h, separately and sum the result. Thus our k¢ kernel takes the form

kc (i, 12) = koopt (ha(Tn), ha(T2)) + Koot (hy (T1), hy (Z2))-

To construct the kernel kg between two shape descriptors S(Z;), S(Z2) we pursue a different
direction. Since S(Z1),S(Z2) are sets with a different number of elements s; we would
have to define a kernel which measures similarity between two sets. There exist kernels
for sets, e.g. [53], but they are typically expensive to compute. Therefore, we follow an
approach by [17] where the authors propose to reduce the set to the most relevant subset
S € S. Elements of the subset S can consist, for example, of cluster centers obtained
from clustering elements in S, or of codebook vectors obtained by performing a vector
quantization. We use vector quantization as proposed by [91] which requires us to specify
a distance measure d (s;,s;) between shape contexts s; and s;. Remember that each

120 CHAPTER 6

s;i € S was a pair (e, H), where e was an edgel coordinate and H € R™*" a radial log
polar histogram. Since we are not interested in absolute coordinates we will only consider
the histogram H. Furthermore we will use the distance measure associated with the total-
variation kernel k., ; which we already have used for histogram comparison. Thus the
distance between shape contexts is given by!

d(si’ Sj)2 = kooH(H(sl)? H(Sl)) + koo|1(H(82)v H(SQ)) - 2koo|1(H(81)7 H(S2))7 (3)
- 17—7[LH(81)1TL + 17—;H(32)1n - 2koo|1(H(51)7H(32))7 (4)

where 1,,,1,, are vectors of m and n ones respectively. We have used the fact that

m n

koot (H, H) =Y > “min(Hy;, Hy) =1,,H1,.
i=1 j=1

If we consider multiple contours at ones, we can collect a very large set S of shape contexts
and thus are ensured to observe a large variety of possible shape contexts. Applying vector
quantization to this set will result in a subset S of shape contexts which cover all shape
contexts in S sufficiently well. Once S is determined, it can be used to extract features
of fixed size for a new image. Let]S | denote the number of obtained codebook vectors.
Given a new image 7 we first extract shape descriptors and obtain S(Z) as described
above. Then, we can use the codebook vectors in S to calculate a histogram hg where
the i-th bin counts the occurrence of codebook vector s; € S in the set of shape contexts
S(Z), ie.
hs(i) = #{s € S(Z)|i = argmin d(s;, s)}.
s$; €S

Note that hg has as many bins as codebook vectors in \5’ | independent of the number of
found edges (and thus shape contexts) in the image Z. Thus our similarity measure kg
between the two sets S(Z1), S(Z2) consists of calculating the two histograms hg(Z;),hs(Z2)
first and then measuring the similarity on the resulting histograms via the total-variation
kernel. Now the input features and the corresponding similarity measures for our KDE
approach are defined. Let us discuss in the following section the output side: features and
kernels for robot posture.

6.2 From Human to Robot Posture

The robot posture is fully specified by the seven joint values of the robot arm. Thus,
elements of our output set) are elements of a seven-dimensional vector space. However,
the feasible set of joint values is highly correlated due to the kinematic constraints of
the robot. Indeed) is a nonlinear manifold in R”. The classical approach would try to
model the manifold explicitly. However, since we are only interested in a submanifold,
the submanifold of human like poses, we are unable to model this submanifold explicitly.
Fortunately we are able to observe points from this submanifold and thus utilize a learning
approach such as KDE. To do so, in the next section we define our output kernel which
measures similarities among the seven-dimensional vectors of joint values which takes
into account the kinematic relationship among joints. After estimation we need to solve
the pre-image problem. In our case the pre-image problem is used to find the target
joint values of the robot. In contrast to the introduced pre-image techniques we will use

!Note that the squared distance between points in a linear space can be expressed by evaluating dot-
products only.

RoOBOT IMITATION — LEARNING BASED APPROACH 121

intermediate solutions of the pre-image problem to construct intermediate joint values
and thus automatically interpolate from an initial set of joint values to target joint values.
This is necessary since the transition of robot states between poses must be smoothly.

6.2.1 A similarity measure on kinematic chains.

Let us define the vector ¢ = [q1, ..., qr] € R” where each entry ¢; defines the value of joint
number 7. We assume that ¢; is the base joint and larger joint numbers indicate that a
joint is closer to the wrist. Let us briefly introduce the notion of forward kinematics which
we will need to describe the relationship between joint values and position of each robot
link and orientation in Cartesian space. Consider the forward kinematic map

k

Fi(q) = [] Ai(a), (5)

1=1

where A; is typically a 4 by 4 transformation matrix which maps homogeneous coordinates
of points in frame i— 1 to coordinates in frame i. In general A;(g;) is provided by the robot
manufacturer. Assuming that the Denavit-Hartenberg [83] convention is used to describe
the kinematic parameters of the robot arm, the matrix A; has the following structure:

r 3x3 3x1
Ai(g) = Relative Rotation Relative displacement
i o' 1
cos(q;) —sin(g;)cos(a;) sin(gi) sin(oy) a;cos(q;)
_ sin(g;) cos(q;)cos(ay) —cos(gi)sin(a;) a;sin(g;)
0 sin(oy) cos(a;) d; ’
0 0 0 1

where «;,d;, a; are constant values of each link and describe quantities such as length,
relative rotation and orthogonal displacement to link ¢ — 1. As one can easily see, the
transformation Fj is nonlinear and maps a set of joint values from the joint space via a set
of trigonometric equations to a 4 x 4 matrix Fj(q). Let us denote this particular matrix
Fy.(q) by T}. From the anatomy of A; one can see that all orientation information must
be stored in the upper left 3 x 3 submatrix Ry of T, é“ and likewise all position information
P is stored in the last column of Té’“, thus Té’“ has the structure

Ry px
Tgf:[0 1].

The pose of the arm is fully determined by the position information given by p; to pr.
Furtermore, to simplify the notation let us denote by pi(q) the position vector py which
we obtain by extracting the last column of T¥ = Fj.(q).

Let us now come back to our main interest: the definition of an appropriate similarity
measure between two joint vectors. Let us begin with arguing why the standard Euclidean
measure is not appropriate for measuring similarities among joint values. Given two joint
vectors g' and g? the standard Euclidian dot product is:

kin(q", q°) Zqz g;.

Let us perturb now a single entry q by a small value €. It is clear that kj;,, will change
by O(e), but this small change will have an effect on all points p;(g') with j > i through

122 CHAPTER 6

the nonlinearities of the forward kinematic map. Therefore, the resulting pose of joint
values ¢' and g? can vary dramatically. Thus the standard inner product ki, is not an
appropriate similarity measure of pose. A more suitable similarity measure could be the
three-dimensional vectors p;(q). We propose to use the sequence of vectors

[pl(q1)7p2(q1)’ s ’p7(q1)]7 [pl (q2)vp2(q2)7 s 7p7(q2)]

to calculate the weighted pose kernel

kpose(q", q°) ZA k(pi(a'), pi(a®)), (6)

which require a base kernel k : R? x R3 — R to measure the similarity between the
Euclidean position of the robot link 7 with joint values g' and joint values g®. Note that
this pose kernel corresponds to a feature space F; x - x F7 where each F; is constructed
using the base kernel \;k(-,-) and the Euclidean coordinates of joint 7. In this thesis we
use a linear kernel function as base kernel. A nice property of this kernel is its recursive
nature, since the evaluation of p;+1(q) requires the calculation of p;(g) due to equation
(5) which allows for an efficient calculation. The weights A; in the kernel kps. control the
importance of each position vector p;. In the beginning we set all weights to 1 but discuss
later how to improve imitation by changing these weights. After defining our pose kernel
we are ready to predict the corresponding output features. Since we have to command
our robot with joint values we have to reconstruct the final joint values from the predicted
features. Thus we have to solve a pre-image problem. However, there is a nontrivial issue
which is that we cannot provide an arbitrary pre-image vector g* to our robot since we
are constrained by the current state g°. In the next section we discuss how to construct
pre-images which are close to the current state of the robot, but converge to final pose
value.

6.2.2 Interpolation using constrained pre-images

In this section we discuss how to calculate the pre-image ¢* given its estimated features W
under the constraint that the robot currently is in state ¢°. 2 This constrained pre-image
problem can be formulated as

C]* = argmin||VT¢pose(Q) _\IJ||2+)‘||q_QOH27 (7)
qERT

where ¢p0se denotes the feature mapping corresponding to the pose kernel given in the
previous section. Since W is given by the predicted coordinates in some orthogonal basis
V' (see chapter 3) all quantities in (7) are computable. Note that the second term is
not in the feature space since we really want to generate a pre-image which deviates as
small as possible from the current state g of the robot. Solving the pre-image problem (7)
repeatedly by updating o with ¢* allows us to interpolate from ¢ to an optimal pre-image
with intermediate joint values. Unfortunately, this requires that we use a specially tailored
optimization approach such that the pre-image algorithms developed in chapter 3 cannot
be used.

Alternatively, by omitting the second term in (7) we would have altered the problem
back to the standard pre-image problem in chapter 3 which makes the developed tech-
niques applicable. The simplest approach to create intermediate joint values is to use

2We thank Bernhard Schélkopf for this suggestion.

RoOBOT IMITATION — LEARNING BASED APPROACH 123

the unconstrained pre-image ¢* as the end point for linear interpolation. This, however
would conflict with our goal of imitating human movement. As an example, consider the
first three features of training data in Dy plotted in figure 6.5 obtained by projecting all
output joint vectors {y@}f\il to the kernel PCA basis using the pose kernel. One can see
that given two arbitrary joint vectors a linear interpolation yields a path in feature space
that passes through low density regions (see figure 6.5-a) meaning that the robot moves in
a manner which is probably not human-like. To ensure that the path stays in high density
regions we propose to correct the linear interpolation path. This can be done by projecting
the path into the feature space and looking for the point where the feature space distance
to the nearest neighbor in Dy is maximal. The corresponding joint vector of the found
nearest neighbor is then used as an intermediate pass point for the linear interpolation.
This procedure is repeated until the maximal distance of a linear interpolation deviates not
more than some given threshold. Since this path generation approach requires to calculate
feature coordinates repeatedly it is obviously a performance bottleneck in the pre-image
calculation. Therefore, we have to apply techniques from 4 to reduce the computational
load in calculating kernel PCA features resulting in faster pre-image computation. We
will discuss this later.

We now have all the necessary techniques to estimate output pose features and recon-
struct the necessary output joint vector with the additional necessary intermediate points
to steer the robot to the pre-image joint vector.

6.3 Experiments

In this section we want to investigate the generalization performance of our imitation
system. Currently, the system is trained to follow a single actor (namely the author of
this thesis). Nevertheless, we will test whether the system is capable to generalize to
different actors of different skin color, body size and postures. We will start by describing
the difficulties we faced in collecting the training data, an issue normally not discussed in
machine learning. Then, we discuss the details of the parameterization and pre-processing
we have used for KDE training. In particular, we will see the advantage of combining
MRS and kPCA for KDE. Furthermore, we investigate whether the features are the right
choice, i.e. if they fulfill the requirements mentioned in section 6.1.1. Since it is hard to
quantify the imitation performance using an objective criteria, we investigate the imitated
robot trajectories qualitatively. Let us start with the description of the data collection
process.

Since KDE is a supervised approach we have to create a set of examples Dy =
{z;,y}Y, with human and robot posture information first. For the resulting N robot
postures {yi}fil € R7 a human actor imitated the robot posture to obtain the required
inputs x; for each robot posture y;. In this manner, we constructed 50 pairs of human-
robot postures some of which are shown in figure 6.6. This dataset was used to learn the
KDE mapping between human and robot postures which we are going to discuss next.

6.3.1 Training KDE

For KDE training we have to perform a kPCA both for the input and for output data.
Afterwards we use the obtained principal components to extract non-linear features which
are used to train the mapping T between feature spaces. To this end we will use the MRS
technique from chapter 2 which will turn out to be very convenient if used in combination
with kPCA. We finally apply the reduced set selection techniques from chapter 4 to speed

124 CHAPTER 6

Features of joint vectors using pose kernel

1400+
1.5+ N A'l | 12004
1 , - 1000+
o —_
g E 800
a N
©
£ 600+
400
-200 200
400
2 600 x [m]
15 1 05 0 -05 -1 -15 -2
a) Feature 1 Feare2) y [m]
2
150]
1t i
g o5 5 *
= | by .
s o AR
2
9 %
@ —0.5¢]
E ¢
'g -1r ’ 4 7
q0
-1.5¢ 1
_2 L 4
-25 qé I I I I I I
0 1 2 3 4 5 6 7 8
c) Joint Nr d)

Figure 6.5: First three kPCA features of joint vectors during a linear interpolation of joints from
qo to ¢*. a) A linear interpolation of joints leads to a non-linear path in feature space. b) The
robot postures during interpolation. ¢) The linear joint trajectories. d) Intermediate points are
automatically generated if the linear interpolation between current state and found pre-image is
too far from patterns in training set (path 1). This process must be repeated if necessary if the
path resulting from new points is still too far (see path 2 and 3).

up the KDE map.

Kernel PCA on the output space. After obtaining output postures, we perform a
kPCA using the weighted pose kernel kp,se introduced in (6). Since the used robot has
the first two joint axis at the base (the shoulder), we can set the weights of the first two
coefficients in the pose kernel to zero. This is possible since the Cartesian position of these
joints cannot change due the kinematic of the used robot. Note that this does not imply
that we can ignore the two joint values since they are needed for computation of all other

RoOBOT IMITATION — LEARNING BASED APPROACH 125

Figure 6.6: Example input output pairs of the training data. First column: Observed image.
Second Column: Corresponding robot posture. Note that the algorithm does not use the images,
but only the joint values. Third Column: Output training data set shown from two different
camera azimuth values.

succeeding joint positions.? All remaining coefficients are set to one. Using this kernel we
perform kPCA. The cumulative variance obtained from the eigenvalues is shown in figure
6.7. One can see that 95% of the variance is captured by the first 13 principal components
which allows us to ignore the remaining ones. Let us denote the principal components
found by kPCA by V1 = [v1,...,v13]. Note that v; is given as an expansion of training
patterns, i.e.,

50
V; = 53 Z 6? ¢pose (yj) - [¢pose (yl); ceey ¢pose (y50)] Siely
=1

where ¢/ € R is the coefficient vector obtained by the kPCA algorithm and s; is a
normalization constant such that v;'—vl- =1, see A1.3. We will write all coefficients in
one matrix FE, given as E, = [e!,...,e!?] € R?"*13. Therefore the basis V' is given as
Vi = [bpose(y1), - - - Dpose(y50)] SE, and S, is a diagonal matrix.

3The used kinematic map for our robot, the MITSUBISHI PA-10 is given explicitly in appendix X.1.

126 CHAPTER 6

o
@
:

\

©
o
:
,

95%

Cumulative Sum of Variance
o
N
‘

o
N}
:

,

5 10 15 20 25 30 35 40 45 50
Principal Component

Figure 6.7: The spectrum of the feature space variance on the training data using the pose kernel.
The first 13 components describe 95% of the observed variance.

Kernel PCA for the input space. Let us now estimate an orthogonal basis W1 in the
feature space Fj, of the input data. By carefully selecting the output data set we restrict
ourselves to a small space of valid robot postures. Since both output and input bases are
so far independent of each other we can use an arbitrary amount of data points to find
W . For the input case we will use more patterns besides the ones in Dsg that are not
necessarily assigned to a valid robot posture. This is necessary since we have to construct a
finite codebook for the shape and color kernel first. To this end, we record 500 frames of an
actor performing arm movements and calculate for all 500 frames the edge maps and shape
contexts after resizing the image to 100 x 100. For shape context calculation we choose
dy, = 10 — 1 to obtain the distance bins and d¢ = % as angular bin. Before calculating a
shape descriptor containing all shape contexts we first smooth the image using a Gaussian
convolution filter of size 5 x 5, where we use ¢ = 3 as variance parameter. From our 500
edge maps we retrieve 500 shape descriptors which consist of more than 20 shape contexts
each, leading to a total number of 12475 shape contexts. We randomly choose 2000 shape
contexts and perform vector quantization with the distance measure defined in (3). This
results in 80 shape contexts which we use then use as codebook vectors. Thus if we obtain
a shape descriptor S = {(e;, H;)}", of arbitrary size m we will calculate the resulting
histogram by assigning each shape context s; € S to one of the 80 bins. This is done
by calculating the nearest neighbor of s; given the 80 codebook vectors. For skin color
estimation we manually select skin pixels from these 500 frames and use all selected color
values to estimate the mean and the covariance of a single Gaussian distribution function.
Overall we have 354 pixels for the estimation of color. This allows us now to calculate
a skin map for each image and to calculate the row and column histograms h;, h, per
image. We use 10 bins for h, and h, each.

Finally, we calculate the kPCA bases W in feature space via the color and shape
kernel ks_. introduced in (1). Let us denote the feature map associated to the this kernel
by ¢s—. We keep 109 principal components since they capture 95% of the variance (see
figure 6.8). Analog as for the output bases V'1 we yield for Wi = [wy, ..., wig9| expansions
of training patterns

500

w; = 8; Z e pso(5) = [bs—c(21), - - -, ds—c(T500)] 806",

Jj=1

RoOBOT IMITATION — LEARNING BASED APPROACH 127

o
@
T
I

o
o)
s

95%

Cumulative Sum of Variance
o
N
‘

©
N
T
I

50 100 150 200 250 300 350 400 450 500
Principal Component

Figure 6.8: The spectrum of the feature space variance on the training data using the color and
shape kernel. The first 109 components describe 95% of the observed variance.

where e’ € R s; € R are the necessary coefficient vector and scaling coefficient. As for
the output case we collect all coefficients in one matrix F,, given as E,, = [e!,..., e!?] €
R500x109

Since we can use the input and output bases V1 and W for feature extraction we
extract features of all data pairs in Dsy. Thus we extract a 109-dimensional description
of the input image and a 13-dimensional description of the robot posture. Let us denote
the coordinate of a data point x in feature space by Z. Thus we obtain the new dataset
Dso = {#;,9:}2°, where #; = Wquﬁs_c(xi) and §; = VngzSpose(yi). Using Dsp we now
have to learn the KDE mapping between the coordinates of images and postures. For this
mapping, we use MRS.

Training MRS and speeding up Since we have only 50 data points to estimate a
linear mapping from 109 to 13 dimensions we have to check whether the data points are
possibly orthogonal in the feature space of the inputs. In this case, the application of a
rank-constrained regression technique such as MRS would not make sense. Fortunately,
as one can see in figure 6.9, this is not the case. It is reasonable to assume that all data
live in a 13-dimensional subspace. To find a reasonable dimension of the subspace and
thus a rank parameter for MRS, we performed 5 fold cross validation. We tested the rank
values [5,...,13] with rank 7 being the best choice. Note that, it is not necessary to test
larger rank values than 13 since this is the number of principal components we kept in the
output feature space. Note that the MRS mapping yields us an explicit SVD presentation
of the predictor Tr. Let us denote this SVD representation as

Tr = VaDW,

where in our case Wy € R9%7 1, € R13*7 are orthogonal matrices of rank ~ and D € R7*7
is a 7 by 7 diagonal matrix. We assessed the performance of MRS by comparison to PLS.
We perform 5 fold cross validation where at each fold we train MRS with rank constrained
equal to 7 and PLS with 7 iterations. We obtained a squared crossvalidation error of
14.14 + 1.5 for PLS and 13.8 4+ 1.4 for MRS. This indicates that our regression method
performed better than a standard reduced rank technique.

The benefit of using kPCA and MRS together is that we can multiply W5 by the coeffi-
cient matrix E,, to obtain thew expansion matrix E,, = E,,W,. This can be considered as

128 CHAPTER 6

o
©
:

,

©
o
:
,

95%

Cumulative Sum of Variance
o
N
:
‘

o
N}
:

,

5 10 15 20 25 30 35 40 45 50
Principal Components

Figure 6.9: The cumulative sum of variances of the training data in feature space. The data lives
in a subspace of the 109-dimensional feature space.

a rotation in feature space W1 — Wy by applying the orthogonal transformation W5 to
the coefficient matrix Ey, (by definition of kPCA E,, is also orthogonal). Thus we obtain
the new orthogonal basis W
Wy =XS8 E,W, = XSE,.
~——

orthogonal

Here S denotes a diagonal matrix which ensures that the columns of Wy have unit norm.
Fortunately F,, has a lower rank than F,,. This implies that we will need fewer principal
directions, such that input feature extraction can be accelerated. Indeed in our case we
obtained a reduction from 109 x 500 operations necessary for feature extraction down
to 7 x 500 operations. This is already a substantial reduction, but further speed up is
possible by using reduced set selection. The application of multi-hyperplane matching
pursuit yielded a final modified kernel PCA expansion which uses only 167 input patterns
from 500 original ones.

Pre-images After prediction with MRS we have to reconstruct the real joint vector from
its estimated coordinates. To achieve this task, we use a one-nearest-neighbor approach
to learn the pre-image map. In our case a learning approach based on nearest-neighbor
is well suited since we want to choose a joint configuration from a (possibly large) set of
a-priori set robot postures. The found pre-images are then used for trajectory generation
as described in section 6.2.2.

6.3.2 Are the features the right choice?

Since our robot and its camera is mounted on a wall (see figure 6.10-a), the background
of the images will be almost static. However, it turned out that although we are working
in an indoor scene, background clutter and varying influences are sources of error. To
see this, consider the indoor scene shown in figure 6.10-b where the actors are observed.
Since all actors are standing upright, the least critical issue is point C: The skin-colored
floor. Unfortunately, both other issues might lead to problems. In particular, color turns
out to be a fragile and sensitive clue. Currently our system forces us to re-calibrate the
skin-color detector depending on the day time since the environmental lighting Therefore

RoOBOT IMITATION — LEARNING BASED APPROACH 129

the color values change during the day. Furthermore, we currently are not able to avoid
wrong contours which caused by reflections in the window. For example consider the
contour in figure 6.10-c where the actor rises his right arm. One can see that an additional
”ghost-arm” arm appears on his head. Such erroneous contours appear due to reflections
in the background and are an artifact by our naive background subtraction.

c)

Figure 6.10: a) Our robot is mounted on a wall and we are operating in an indoor scene. Thus
the assumption of a constant background is reasonable. b) Sources of problems for our assumed
conditions. A: Lighting conditions change due to daylight, B: Curtains can move and day light
might pass in leading to clutter. Furthermore, windows add reflections in the scene leading to false
contours as can be seen in ¢). C: The color of the ground floor can appear as skin due the lighting.

Let us now investigate some invariance and stability properties of the used shape
and color features. Although our features are constructed such that they are invariant
under scale and translation it will turn out that in practice invariance properties are
lost due to the experimental setup and the preprocessing. To this end, we perform the
following experiment: we take snapshots of an actor showing two distinct postures at
various positions allowing for motion only parallel to the camera. We would expect a
translation invariant feature to yield feature vectors that do not change during translation.
Thus if we plot the distance between two feature vectors we would expect a value close
to zero. In figure 6.11 we show the translated postures and the resulting distance plots.
One can see that indeed that there is a clear gap between both curves. However, there
is some small variation in the path of features. Does this mean that our features are not
translation invariant? The answer is yes and no. No, because our features are invariant by
construction since position and scale does not enter. Unfortunately, complete invariance
cannot maintained since we have to resize the image to 100 by 100. Thus we introduce
small quantization artifacts although the image is smoothened by a Gaussian filter. On

130 CHAPTER 6

the other hand, another source of instability of the features is that we do not have uniform
lighting in the room. Thus small changes in the physical location might lead instabilities
in the contour due to the inhomogeneous lighting.

2 T T T r

= Arm right
——Armup |]

o I
© = N M o ©

Distance to first frame

o
o

0.4r

0 2 4 6 8 10
Number of translated pixels

Figure 6.11: Source of variation in the feature vector. Although we are using theoretically
translation-invariant features the real feature vectors do not fulfill this requirement entirely. This
effect might be due to quantization artifacts and possible varying lighting conditions in the room.

After discussing these difficulties, the reader will have lowered his expectations suffi-
ciently. Let us therefore advance and discuss how our system performs in reality.

Resulting Trajectory Paths

In the following we record simple movements from various actors and investigate the
resulting robot joint trajectories. Ideally we expect trajectories which lead to a posture
similar to the actors. We present successfully imitated postures and cases where the
system failed. For these unsuccessful cases we discuss reasons for the failure and possible
improvements.

Successful Cases

In the following we let an actor perform arm-up-down movements and record the synthe-
sized trajectories of our system. We show in figure 6.12 the resulting joint trajectories
for the first 6 joints while an actor rises his right arm. The obtained trajectories are for
a sequence of 10 moves. As one can see, smooth trajectories are obtained. Furthermore
the resulting trajectories lead to arm motion which resembles an arm-down to arm-up
movement. In figure 6.12 we show the result of an arm waving sequence. An interesting
fact is that during imitation the human adjusts his speed to the robot. For example, a
complete arm rising movement took almost 10 seconds. However, this is still faster than
the computationally expensive optimization procedure proposed in chapter 5.

Unsuccessful Cases

Let us now discuss some cases where the system was not able to find a reasonable robot
posture. Consider the examples in figure 6.14. Since the shape and color feature vectors
are quite distinct from anything we saw in the training data set, it is unlikely to expect
a good generalization for these scenarios. Currently, the system reacts as it would have
predicted with a zero feature vector since the the observed features are so different from

RoOBOT IMITATION — LEARNING BASED APPROACH 131

the training data and therefore the color histograms are zero. Thus the system does not
respond in an uncontrolled manner if it is not able to generalize.

6.4 Conclusion

In this chapter we considered the problem of posture imitation as an estimation task and
discussed a possible implementation. In particular, we have formulated the estimation
task as: given a single image of a human actor what is the corresponding robot posture?
We proposed to use KDE for the problem of learning the map between image and posture.
Since KDE requires to define similarity measures for input and output we have proposed

1.1 ——ge—— T 03 T T T T 11
. 1
0.25 0.9
09
* 08
08
- = 02 =07
E g g
£07 z 209
S 2015 Sos
06 : :
04
05
01 03 *
04 02
. L 0.05 L L L L 0.1 L L
0 20 80 100 0 20 80 100 0 20 80

40 60 40 60 40 60
Time [sec/10] Time [sec/10] Time [sec/10]

13 T T T T -0.22 T T T T 0.3

100

12
-0.24 0.25
11
1 -0.26 02)
=09 = =
E E—O.ZB B 0.15
208 s m
£ £ £
S 07 S -03 S 01
0§ -0.32 0.05,
0.5
-0.34 0]
0.4
. . . 036 005
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80
Time [sec/10] Time [sec/10] Time [sec/10]

Figure 6.12: Joint trajectories while imitating an arm-down to arm-up movement.

100

132 CHAPTER 6

special kernel functions which are suitable to measure similarity between robot postures.
Therefore, we have investigated shape contexts and color as features which represent hu-
man posture in a single image. The final system is capable of imitating simple movements
after a teach-in phase consisting of a human imitating a set of robot postures. In contrast
to chapter 5 the learning-based system is able to imitate human posture almost online.
Currently, the most unreliable part in the system is the skin color extraction. We have
shown that the system is not able to generalize to a different actor with a different skin
color if this actor was not the teacher. In future, we will investigate more robust color
features and try to integrate information over time. Since KDE uses information only
through kernel functions it is independent of the nature of the used features. Thus more

11 T T 03 T T T T 11
A
1 1
0.25 0.9
0.9
0.8
0.8
= = 02 =07
g g B
£ 0.7 £ z 0.6
3 3 0.15 s 0.5
0.6 : :
0.4
05
01 0.3
04 02
‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ¥ o ‘ ‘ ‘ ‘
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Time [sec/10] Time [sec/10] Time [sec/10]
13 T T T T -0.22 T T T T 0.3,
12
-0.24 0.25
11
1 -0.26 02,
=09 = =
g '@ -0.28 g 0.15
208 s m
£ £ £
807 2 -03 S o1
0§ -0.32 0.05,
0.5
-0.34 0
04
L . . " 036 005
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Time [sec/10] Time [sec/10] Time [sec/10]

Figure 6.13: Joint trajectories and robot postures while imitating an arm-waving movement.

RoOBOT IMITATION — LEARNING BASED APPROACH 133

robust pose features can be considered and easily integrated into the current framework.
This clearly demonstrates the strength of KDE: Feature encapsulation by kernel functions.

134 CHAPTER 6

Figure 6.14: Examples of failure. Background clutter and unreliable color information leads to
an erroneous reaction of the system. First column: Observed image. Second column: Observed
edge map. The resulting color map was overall zero since the skin color was different from those
during training. Thus no skin information was found. Third column: Estimated pose. As one can
see the system does not generalize in this case.

Chapter 7

Summary

You are smarter than computer
— Vladimir Vapnik —

In this thesis we have explored various algorithmic extensions to the method of Kernel
Depency Estimation(KDE) and its application to the problem of robot imitation.

Kernel Dependency Estimation is a novel technique which was designed to learn mappings
between sets without making assumptions on the type of the involved input and output
data. KDE uses kernel functions to encapsulate task-dependent information and refor-
mulates the original problem as a high-dimensional regression problem in feature space.
One of the contributions of this thesis is to propose a novel linear regression algorithm in
chapter 2 that explores low-dimensional subspaces during learning. Learning is formulated
as a single optimization problem while low-dimensional subspace exploration is ensured
by a rank constraint. Problems with rank constraints can be solved by exploiting the ge-
ometrical structure — the Stiefel manifolds — implied by the rank constraint. For the case
that the desired cost function is not differentiable we explore Markov Chain Monte Carlo
(MCMC) techniques to obtain the maximum a posteriori predictor using again properties
of the Stiefel manifold while performing MCMC.

In KDE, after estimating data-type independent feature space coordinates of a new output
entity, one has to reverse the feature mapping by solving the so called pre-image prob-
lem. We propose various techniques how to approach this problem. In the case that the
set of pre-images are smooth, we propose in chapter 3 a learning-based approach. This
has the advantage that the complexity of finding the pre-image is mainly shifted to a
training phase. Thus, the pre-image is merely found by an estimation procedure instead
of a search. We have investigated another pre-image method for data-types that are of
discrete nature such as graphs and strings. In particular we explored techniques based on
the Cross-Entropy (CE) method and extended them to a maximum a posteriori estimate.
This is the first pre-image technique for graps nd strings we are aware of which is in prin-
ciple independent of the kernel function.

A bottleneck in the use of kernel methods, and in particular in KDE is that solutions to
a learning task are always an expansion of kernel functions on training points. For ex-
ample, kernel PCA always uses all training patterns to express its solutions. For realtime
applications this is a serious drawback. Therefore, we investigated reduced set selection

136 CHAPTER 7

techniques in chapter 4 which are able to find sparser subsets. In contrast to existing
methods, we have proposed two novel reduced set selection techniques which are suitable
to compress several expansions simultanously, as, e.g. obtained from kernel PCA.

In chapter 5 we have investigated our main application of interest: the problem of imitat-
ing human posture and its implementation on a seven degree of freedom robot arm. So far,
this problem was not clearly defined in the literature. To this end, we proposed in chapter
5 a mathematical cost function where we have introduced a novel geometrical description
of posture. The advantage of these geometrical description is that it is independent of the
underlying kinematics. We used this cost function to formulate the problem of posture
imitation as a non-linear optimization approach. Given a human arm trajectory we then
found the corresponding robot trajectory as the solution to an optimization problem. We
also showed empirically that exact imitation of pose while performing a pre-defined task
leads to sub-optimal robot trajectories.

Finally, in chapter 6 we relaxed the requirement of knowing the exact 3D-trajectory of
the human. We considered the case when a single input image is given without extra
information about the pose of the human actor. In this setting, an optimization approach
is not possible anymore since the necessary quantities — the posture — is not directly
observable. Therefore, we have investigated the use of image features, i.e. shape and
color, to describe posture in an image. The corresponding robot posture was inferred
using KDE combined with our rank-constrained regression method. Since KDE requires
the specification of kernel functions we have introduced a novel kernel function which
can be used to measure similarity between robot postures. This was not possible with
existing kernel functions. We implemented the learning-based imitation system on a real
robot system and demonstrated that KDE is a suitable learning framework for problems
in robotics.

Appendix

X.1 The kinematical equations of the Mitsubishi PA-10 robot

The forward kinematical map Fj(q) of the Mitsubishi PA-10 robot can be written as a
product of k transformation matrices

Fi.(q) = Ai(q1)A2(q2) - - - Ai(aqr)-

The matrices are given as follows and are taken from [97]:

[cos(q1) —sin(g1) 0 O
sin cos 00
A(q) = b eostan)
I 0 0 0 1
[cos(qz) —sin(g2) 0 0
Ao(q2) = | _ sin(g2) —cos(qz) 0 0
[cos(q3) —sin(g3) O 0
0 0 —1 —450
As(gs) = sin(gz) cos(gz) 0 0
[cos(qs) —sin(gs) 0 O
Ag(qa) = —sin(qs) —cos(qs) 0 0
[cos(¢s) —sin(gs) O 0
0 0 1 —500
As(gs) = sin(gs) cos(gs) 0 0
[cos(gs) —sin(gs) O O
Asld6) = | _gin(ge) —cos(gs) 0 0
[cos(qr) —sin(gr) O 0
A7(qr) = sin(q7) cos(qr) 0 0

Bibliography

[1]

Ankur Agarwal and Bill Triggs. Learning to track 3d human motion from silhouettes.
In ICML °04: Proceedings of the twenty-first international conference on Machine
learning, page 2, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-828-5. doi:
http://doi.acm.org/10.1145/1015330.1015343.

Gokhan H. Bakir, Léon Bottou, and Jason Weston. Breaking svm complexity with
cross-training. In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, Advances
in Neural Information Processing Systems 17, pages 81-88. MIT Press, Cambridge,
MA, 2005.

Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape context: A new descriptor
for shape matching and object recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(24):509-522, 2002.

K. P. Bennett and M. J. Embrechts. An optimization perspective on partial least
squares regression. In S. Basu C. Micchelli J. Vandewalle J.A.K. Suykens, G. Hor-
vath, editor, Advances in Learning Theory: Methods, Models and Applications, vol-
ume 190, pages 227-250. IOS Press, 2003.

A. F. Bobick and J. Davis. An appearance-based representation of action. Pattern
Recognition, 1:307-312, August 1996.

A. W. Bojanczyk and A. Lutoborski. The Procrustes problem for orthogonal Stiefel
matrices. SIAM Journal on Scientific Computing, 21(4):1291-1304, 2000.

Matthew Brand and Aaron Hertzmann. Style machines. In Kurt Akeley, editor,
Siggraph 2000, Computer Graphics Proceedings, pages 183-192. ACM Press / ACM
SIGGRAPH / Addison Wesley Longman, 2000.

Matthieu Bray, Esther Koller-Meier, Nicol N. Schraudolph, and Luc Van Gool.
Stochastic meta-descent for tracking articulated structures. In Conference on Com-
puter Vision and Pattern Recognition, Washington D.C., 2004.

C. Bregler and J. Malik. Tracking people with twists and exponential maps. In
IEEE Computer Vision and Pattern Recognition, pages 8-15, 1998.

C. Bregler, L. Loeb, E. Chuang, and H. Deshpande. Turning to the masters: Motion
capturing cartoons. ACM Transactions on Graphics, 21(3):399-407, 2002.

A. Bruderlin and L. Williams. Motion signal processing. In SIGGRAPH, pages
97-104, 1995.

139

140

BIBLIOGRAPHY

[12]

[13]

[20]

[21]

[22]

23]

C. J. C. Burges. Simplified support vector decision rules. In L. Saitta, editor,
Proceedings of the 13th International Conference on Machine Learning, pages 71—
77, San Mateo, CA, 1996. Morgan Kaufmann.

C. J. C. Burges and B. Scholkopf. Improving the accuracy and speed of support
vector learning machines. In M. Mozer, M. Jordan, and T. Petsche, editors, Advances
in Neural Information Processing Systems 9, pages 375—-381, Cambridge, MA, 1997.
MIT Press.

T. Caelli, A. McCabe, and G. Binsted. On learning the shape of complex actions.
In International Workshop on Visual Form, pages 24-39, 2001.

Yasuko Chikuse. Concentrated matrix langevin distributions. Journal of Multivari-
ate Analysis, 85:375394, 2003.

M. Crampin and F. A. E. Pirani. Applicable Differential Geometry. Cambridge
University Press, Cambridge, U. K., 1986.

Gabriela Csurka, Cedric Bray, Chris Dance, and Lixin Fan. Visual categorization
with bags of keypoints. In Proceedings of the 8th Furopean Conference on Computer
Vision - ECCV, 2004.

S. de Jong. Simpls: An alternative approach to partial least squares regression.
Chemometrics and Intelligent Laboratory Systems, 18:251-263, 1993.

A.K. Debnath, R.L. Lopez de Compadre, G. Debnath, A.J. Shustermann, and
C. Hansch. Structure-activity relationship of mutagenic aromatic and heteroaro-
matic nitro compounds. correlation with molecular orbital energies and hydropho-
bicity. J Med Chem, 34:786-797, 1991.

D. di Ruscio. A weighted view on the partial least squares algorithm. Automatica,
36:831-850, 2000.

T. Downs, K. E. Gates, and A. Masters. Exact simplification of support vector
solutions. Journal of Machine Learning Research, 2:293-297, December 2001.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley, New York,
second edition, 2001.

A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with or-
thogonality constraints. SIAM Journal on Matriz Analysis and Applications, 20(2):
303-353, 1999.

R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, New York,
19809.

A. Fod, M. J. Mataric, and O. C. Jenkins. Automated derivation of primitives for
movement classification. Autonomous Robots, 12(1):39-54, 2002.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison-Wesley Professional, 1995.

D.M. Gavrila and L. Davis. 3d model-based tracking of humans in action: A multi-
view approach. In Proc. of IEEE Conference on Computer Vision and Pattern
Recognition, pages 73-80, 1996.

BIBLIOGRAPHY 141

[28]

[29]

[30]

[40]

[41]

[42]

C. Gentile. A new approximate maximal margin classification algorithm. In T. K.
Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Pro-
cessing Systems 13, pages 500-506. MIT Press, 2001.

Alan Genz. Methods for generating random orthogonal matrices. In H. Niederreiter
and J. Spanier, editors, Monte Carlo and Quasi-Monte Carlo Methods, pages 199—
213. Berlin, 1999.

J. Giebel, D.M. Gavril, and C. Schnérr. A bayesian framework for multi-cue 3d
object tracking. In T. Pajdla and J. Matas, editors, Proceedings of the Furopean
Conference on Computer Vision (ECCV), 2004.

M. A. Giese and T. Poggio. Synthesis and recognition of biological motion pattern
based on linear superposition of prototypical motion sequences. In Proceedings of
IEEE MVIEW 99 Symposium at CVPR, Fort Collins, pages 73-80, 1999.

M.A. Giese and T. Poggio. Morphable models for the analysis and synthesis of
complex motion patterns. International Journal of Computer Vision, 38(1):59-73,
2000.

M.A. Giese, B. Knappmeyer, and H.H. Biilthoff. Automatic synthesis of sequences of
human movements by linear combination of learned example patterns. In Workshop
on Biologically Motivated Computer Vision, pages 538547, 2002.

G. H. Golub and C. F. Van Loan. Matriz Computations. John Hopkins University
Press, Baltimore, MD, 3rd edition, 1996.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. Springer Verlag, New York, 2001.

M. Hein and O. Bousquet. Hilbertian metrics and positive definite kernels on prob-
ability measures. In Proceedings of AISTATS 2005, 2005.

I. Helland. On the structure of partial least squares regression. Commun. Statist.
Simula., 17(2):581-607, 1988.

A E. Hoerl and R.W. Kennard. Ridge regression: Biased estimation for nonorthog-
onal problems. Technometrics, 12(3):55-67, 1970.

B. Hofmann. Mathematik inverser Probleme. B.G. Teubner Stuttgart-Leipzig,
Leipzig, 1999.

W. Ilg and M.A. Giese. Modeling of movement sequences based on hierarchical
spatial-temporal correspondence of movement primitives. In Workshop on Biologi-
cally Motivated Computer Vision, pages 528-537, 2002.

W. Ilg and M.A. Giese. Estimation of skill level in sports based on hierarchical
spatio-temporal correspondences. 2003. submitted.

C. J. Isham. Modern Differential Geometry for Physicists, volume 61 of World
Scientific Lecture Notes in Physics. World Scientific, Singapore, second edition,
1999.

0.C. Jenkins and M. J. Mataric. Deriving action and behavior primitives from
human motion data. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 2551-2556, 2002.

142 BIBLIOGRAPHY

[44] 1. T. Jolliffe. Principal Component Analysis. Springer-Verlag, New York, New York,
1986.

[45] Michael J. Jones and James M. Rehg. Statistical color models with application to
skin detection. International Journal of Computer Vision, 46(1):81 — 96, 2002.

[46] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled
graphs. In T. Faucett and N. Mishra, editors, Proceedings of the 20th International
Conference on Machine Learning, pages 321-328, Menlo Park, CA, AAAI Press,
2003.

[47] M. Kass, A.P. Witkin, and D. Terzopoulos. Snakes: Active contour models. IJCV,
1(4):321-331, January 1988.

[48] Wolf Kienzle, Gokhan H. Bakir, Matthias O. Franz, and Bernhard Scholkopf. Face
detection — efficient and rank deficient. In Lawrence K. Saul, Yair Weiss, and
Léon Bottou, editors, Advances in Neural Information Processing Systems 17, pages
673—-680. MIT Press, Cambridge, MA, 2005.

[49] K.I. Kim, M.O. Franz, and B. Schélkopf. Iterative kernel principal component anal-
ysis for image modeling. [IEFEE Transactions on Pattern Analysis and Machine
Intelligence, 2003.

[50] G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions.
Journal of Mathematical Analysis and Applications, 33:82-95, 1971.

[51] C. Klein and B. Baho. Dexterity measures for the design and control of kinematically
redundant manipulators. International Journal of Robotic Research, 6(2):72-83,
1987.

[52] Donald E. Knuth. The Art of Computer Programming. Addison-Wesley, 1998.

[53] R. Kondor and T. Jebara. A kernel between sets of vectors. In Proceedings of the
ICML, 2003.

[54] J.T. Kwok and I.W. Tsang. The pre-image problem in kernel methods. IEEE
Transactions on Neural Networks, 15(6):1517-1525, 2004.

[55] F. Lindgren, P. Geladi, and S. Wold. The kernel algorithm for pls. Journal of
Chemometrics, 7:45-60, 1993.

[56] J.S. Liu. Monte Carlo Strategies in Scientific Computing. Springer Series in Statis-
tics. Springer Verlag, New York, 2001.

[57] David J. C. MacKay. Information Theory, Inference, and Learning Algorithms.
CUP, 2003.

[58] O. Mangasarian. Nonlinear Programming. STAM, Philadelphia, 1994.

[59] M. J. Mataric. Visuo-motor primitives as a basis for learning by imitation : Linking
perception to action and biology to robotics. In K. Dautenhahn and C. Nehaniv,
editors, Imitation in Animals and Artifacts, pages 392-422. MIT Press, 2002.

[60] C. A. Micchelli. Interpolation of scattered data: distance matrices and conditionally

positive definite functions. Constructive Approximation, 2:11-22, 1986.

BIBLIOGRAPHY 143

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

S. Mika, B. Scholkopf, A.J. Smola, K.-R. Miiller, M. Scholz, and G. Rétsch. Kernel
pca and de-noising in feature spaces. volume 11 of Advances in Neural Information
Processing Systems, pages 536-542. MIT PRESS, 1999.

Anurag Mittal, Liang Zhao, and Larry S. Davis. Human body pose estimation using
silhouette shape analysis. In IEEE Conference on Advanced Video and Signal Based
Surveillance, pages 263— 270, 2003.

H. Miyamoto and M. Kawato. A tennis serve and upswing learning based on bi-
directional theory. Neural Networks, 11:1331-1344, 1998.

Greg Mori and Jitendra Malik. Estimating human body configurations us-
ing shape context matching. In ECCV (83), pages 666-680, 2002. URL
citeseer.ist.psu.edu/moriO2estimating.html.

T. Mori and K. Uehara. Extraction of primitive motion and discovery of association
rules from motion data. In Proceedings of the IEEE International Workshop on
Robot and Human Interactive Communication, pages 200-206, 2001.

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge
University Press, Cambridge, MA, 1995.

R. M. Neal. Probabilistic inference using Markov chain Monte Carlo meth-
ods. Technical Report CRG-TR-93-1, University of Toronto, 1993. URL

citeseer.ist.psu.edu/neal93probabilistic.html.

Maria Petrou and Panagiota Bosdogianni. Image Processing, The Fundamentals.
John Wiley and Sons, 1999.

N. S. Pollard, J. Hodgins, M. J. Riley, and C. Atkeson. Adapting human motion
for the control of a humanoid robot. In IEEFE International Conference on Robotics
and Automation, 2002.

G. Rétsch, T. Onoda, and K.-R. Miiller. Soft margins for AdaBoost. Machine
Learning, 42(3):287-320, 2001. Also: NeuroCOLT Technical Report 1998-021.

C. Rose, M. F. Cohen, and B. Bodenheimer. Verbs and adverbs: Multidimensional
motion interpolation. IEEE Computer Graphics and Applications, 18(5):32—40, 1998.

Roman Rosipal and Leonard J. Trejo. Kernel partial least squares regression in
reproducing kernel hilbert space. JMLR Special Issue on Kernel Methods, Special
Issues, 2001.

H. A. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(1):23-38, 1998.

Reuven Rubinstein and Dirk Kroese. The Cross-Entropy Method: A Unified
Approach To Combinatorial Optimization, Monte-Carlo Simulation, and Machine
Learning. Springer, New York, USA, 2004.

J. Salisbury and J. Craig. Articulated hands: Force control and kinematic issues.
Int. J.of Robotic Research, 1982.

Ali H. Sayed. Fundamentals of Adaptive Filtering. Wiley-IEEE Press, 2003.

144 BIBLIOGRAPHY

[77] S. Schaal. Is imitation learning a route to humanoid robots. Trends in Cognitive
Science, 3:233-242, 1999.

[78] B. Scholkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge, MA,
2002.

[79] B. Scholkopf, S. Mika, C. Burges, P. Knirsch, K.-R. Miiller, G. Rétsch, and A. J.
Smola. Input space vs. feature space in kernel-based methods. IEEE Transactions
on Neural Networks, 10(5):1000-1017, 1999.

[80] B. Schélkopf, A. J. Smola, and K.-R. Miiller. Kernel principal component analysis.
In B. Scholkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel
Methods - Support Vector Learning, pages 327-352. MIT Press, Cambridge, MA,
1999.

[81] B. Scholkopf, K. Tsuda, and J.P. Vert. Kernel Methods in Computational Biology.
MIT Press, 2004.

[82] G. Schreiber, C. Ott, and G. Hirzinger. Interactive redundant robotics: Control of
the inverted pendulum with nullspace motion. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2001.

[83] L. Sciavicco and B. Siciliano. Modelling and Control of Robot Manipulators.
McGraw-Hill, New York, NY, 1996.

[84] L. Sciavicco and B. Siciliano. Modeling and Control of Robot Manipulators. 1996.

[85] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.

[86] J. R. Shewchuk. An introduction to the conjugate gradient method without the
agonizing pain. Technical report, Carnegie Mellon University, 1994.

[87] 1. Steinwart. On the generalization ability of support vector machines. Journal of
Machine Learning, 2:67-93, December 2001.

[88] Bjarne Stroustrup. What is object-oriented programming? IEEE Softw., 5(3):10-20,
1988. ISSN 0740-7459. doi: http://dx.doi.org/10.1109/52.2020.

[89] Robert Tempo, Giuseppe Calafiore, and Fabrizio Dabbene. Randomized Algorithms
for Analysis and Control of Uncertain Systems. Springer-Verlag, 2004.

[90] A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-Posed Problems. V.H. Winston
& Sons, John Wiley & Sons, Washington D.C., 1977. Translation editor Fritz John.

[91] M. Tipping and B. Scholkopf. A kernel approach for vector quantization with guar-
anteed distortion bounds. In T. Jaakkola and T. Richardson, editors, Artificial
Intelligence and Statistics, pages 129-134, San Francisco, CA, 2001. Morgan Kauf-
mann.

[92] Silvio Turrini. Optimization in permutation spaces. Technical Report WRL Research
Report 96/1, digital Western Research Laboratory, 1996.

[93] A. Ude, C. G. Atkenson, and M. Riley. Planning of joint trajectories for humanoid

robots using b-spline wavelets. In IEEE International Conference on Robotics and
Automation, 2000.

BIBLIOGRAPHY 145

[94]

[95]

[96]

[97]

[100]

[101]

[102]

[103]

M. Unuma, K. Anjyo, and R. Takeuchi. Fourier principles for emotion-based human
figure animation. In SIGGRAPH, pages 91-96, 1995.

Vladimir Vapnik. Statistical Learning Theory. John Wiley and Sons, New York,
1998.

P. Vincent and Y. Bengio. Kernel matching pursuit. Machine Learning, 48:165-187,
2002.

Jun Wang, Qingni Hu, and Danchi Jiang. A lagrangian network for kinematic control
of redundant robot manipulators. IEEE Transactions on Neural Networks, 10(5),
1999.

J. Weston, A. Elisseeff, and B. Scholkopf. Use of the fp-norm with linear models
and kernel methods. Technical report, Biowulf Technologies, New York, 2001.

Jason Weston, Olivier Chapelle, Andre Elisseeff, Bernhard Scholkopf, and Vladimir
Vapnik. Kernel dependency estimation. Advances in Neural Information Processing
Systems. The MIT Press, 2002.

A. D. Wilson and A. F. Bobick. Parametric hidden markov models for gesture
recognition. IEEFE Transactions on Pattern Analysis and Machine Intelligence, 21
(9):884-900, 1999.

S. Wold, H. Ruhe, H. Wold, and W. J. Dunne III. The collinarity problem in linear
regression. the partial least squares (pls) approach to the generalized inverse. SIAM
Journal of Scientific and Statistical Computations, 5:735-743, 1984.

Y. Yacoob and M. J. Black. Parameterized modeling and recognition of activities.
Journal of Computer Vision and Image Understanding, 73(2):398-413, 1999.

Leon Zlajpah. Dexterity measures for optimal path control of redundant manipu-
lators. In Proceedings of International Conference on Automatisation and Control
(ICAR), 1996.

